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Abstract

One fundamental problem in causality learning is
to estimate the causal effects of one or multiple
treatments (e.g., medicines in the prescription) on
an important outcome (e.g., cure of a disease).
One major challenge of causal effect estimation is
the existence of unobserved confounders – the un-
observed variables that affect both the treatments
and the outcome. Recent studies have shown that
by modeling how instances are assigned with dif-
ferent treatments together, the patterns of unob-
served confounders can be captured through their
learned latent representations. However, the in-
terpretability of the representations in these works
is limited. In this paper, we focus on the multi-
cause effect estimation problem from a new per-
spective by learning disentangled representations
of confounders. The disentangled representations
not only facilitate the treatment effect estimation
but also strengthen the understanding of causality
learning process. Experimental results on both syn-
thetic and real-world datasets show the superiority
of our proposed framework from different aspects.

1 Introduction
One major challenge of causal effect estimation is the ex-
istence of unobserved confounders [Rosenbaum and Rubin,
1983], i.e., the unobserved variables which influence both
treatment assignment and outcomes [Shalit et al., 2017]. Un-
observed confounders can cause confounding bias to the es-
timated treatment effect. A line of recent studies infers unob-
served confounders by modeling how instances are assigned
with different treatments together. The problem is known as
the multiple treatment effect (MTE) estimation [Wang and
Blei, 2019]. A typical example is to estimate how interven-
ing the cast of movies would change their potential revenues,
e.g., “how much does the revenue (outcome) increase or de-
crease if Oprah Winfrey is in the movie?”. Here, the genre of
the movie is an unobserved confounder that affects which ac-
tors would star the movie as well as the revenue; and different
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actors in the cast (multiple treatment assignment) can provide
complementary insights in revealing the movie genre.

Specifically, recent studies of MTE estimation capture the
unobserved confounders by learning their latent represen-
tations [Wang and Blei, 2019; Saini et al., 2019] through
the interactions between instances and treatments. However,
the interpretability of the learned representations is limited,
which could be an unknown mixture of several latent con-
founders’ representations. In the movie cast example, the
movie genre can be an unobserved confounder, but estab-
lishing the connection between this unobserved confounder
and a particular part of the learned representations is diffi-
cult. In fact, it can greatly facilitate the human understanding
of the confounding bias by separating the distinct, informa-
tive factors of variations in the confounders’ representations
[Locatello et al., 2019]. Motivated by the recent progress
of disentangled representation learning [Higgins et al., 2016;
Tran et al., 2017] which learns factorized representations of
the independent data generative factors, we investigate the
MTE estimation problem from a new perspective by learn-
ing disentangled representations for confounders to improve
the interpretability of causality learning.

However, learning disentangled representations of con-
founders for MTE estimation remains nascent due to the fol-
lowing challenges: (1) Different latent confounders are not
only mixed together but also can exhibit hierarchical patterns
(e.g., high-level latent confounders such as “the movie is an
animation movie” and low-level latent confounders like “the
animation movie is from Disney”), which further increases
the complexity of disentangled representation learning. (2)
When estimating the treatment effects, most existing works
take different treatments separately [Lopez et al., 2017] (i.e.,
constructing a prediction model for each treatment), which
cannot capture the inherent dependencies between different
treatments (e.g., two treatments could be similar if many in-
stances are assigned with them simultaneously).

To address these challenges, we propose DIRECT – a novel
framework of Disentangled multIple tReatment EffeCT esti-
mation with the following desiderata: (1) To capture the hi-
erarchical patterns of mixed confounders, we propose to dis-
entangle the representations of latent confounders at two dif-
ferent levels. We first assume that treatments can be grouped
into different clusters, as observed in many real-world sce-
narios [Schnabel, 2016]. Then by separately inferring con-
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founders from the interactions between instances and each
cluster of treatments (e.g., comedy actors or action actors),
the learned confounder representations will become disen-
tangled at the macro-level. Meanwhile, at the micro-level,
we force different dimensions of the learned confounder rep-
resentations to capture isolated factors with a carefully de-
signed variational autoencoder (VAE) framework. (2) To
tackle the issue that different treatments are often processed
separately, we jointly consider multiple treatments simultane-
ously by leveraging their inherent dependencies. Specifically,
we learn a trainable function to obtain the representation for
each treatment based on treatment assignments. One appeal-
ing byproduct is that the framework can be generalized to new
treatments that are not in the training data. Our main con-
tributions include: 1) Problem: We formulate a new prob-
lem of disentangled multiple treatment effect estimation; 2)
Framework: We propose a novel framework DIRECT to ad-
dress this problem by learning disentangled confounder rep-
resentations at two granularity levels; 3) Experiments: We
conduct extensive experiments to show the superiority of DI-
RECT w.r.t. MTE estimation and interpretability.

2 Problem Definition
We use {A,Y } to denote the observational data, where
A = {ai}ni=1 denotes the treatment assignment, and ai =
{ai,j}mj=1 refers to the assignment of m different treatments
on the i-th instance. Without loss of generality, we focus on
treatments with binary values, i.e., ai,j ∈ {0, 1}. The ob-
served outcome is denoted by Y = {yi}ni=1, and yi ∈ R.
We build our framework upon the potential outcome frame-
work [Vemuri, 2015]. We represent the potential outcome in
the multiple treatment setting by Ya = {yi(a)}ni=1, where
yi(a) is the value of the outcome that would be observed
if the i-th instance receives the treatment assignment a ∈
{0, 1}m. Then the ITE for the i-th instance over a is defined
as τi,a = yi(a) − yi(0), where yi(0) refers to the potential
outcome when no treatment is assigned to the i-th instance.
Definition 1. (Disentangled multiple treatment effect estima-
tion) Given observational data {A,Y }, our goal is to: (1)
learn disentangled representations for the latent confounders.
(2) estimate the ITE τi,a for each instance i under any treat-
ment assignment a.

In our work, we relax the strong ignorability assump-
tion [Rosenbaum and Rubin, 1983] (i.e., no unobserved con-
founders) by assuming that there may exist confoundersZ =
{z1, ..., zn} which (might be unobserved) can causally in-
fluence A and Y . Conditioning on the confounders, the
treatment assignment is randomized, i.e., Yi(a) ⊥⊥ Ai|Zi
1 for any treatment assignment a ∈ {0, 1}m. Following
[Wang and Blei, 2019], we also assume that for each in-
stance i, the assignment of different treatments is indepen-

1We use non-italicized capital letters to denote random variables,
and italicized letters to denote specific realization. Among the ital-
icized letters, non-bold letters denote scalars, bold lowercase letters
denote vectors, and bold uppercase letters denote matrices or sets.
For example, Zi is a randomly chosen vector of confounders, Z is
the set which contains confounders of all instances, and zi denotes
the values of confounders for instance i.

dent with each other conditioned on the confounders, i.e.,
Ai,1 ⊥⊥ ... ⊥⊥ Ai,m|Zi. Other assumptions in this work
include the Positivity, Consistency, and SUTVA assumptions
[Rubin, 2005], which are widely-adopted in causal inference.

3 The Proposed Framework
The causal graph of the studied problem is shown in Fig. 1,
where Zi denotes the confounders which influence the out-
come and the assignment of at least one treatment for each
instance i. Our framework DIRECT learns disentangled rep-
resentations of confoundersZ with a carefully designed vari-
ational autoencoder (VAE) architecture. At the macro-level,
we learn the embedded cluster structure of different treat-
ments to better learn and interpret the confounder represen-
tations. At the micro-level, we force each dimension of the
learned representation to capture an isolated factor. Further-
more, by leveraging the dependencies among treatments, we
learn a parameterized function to obtain the representation of
each treatment. In this way, the model can be generalized
to estimate the effects of treatment assignment including new
treatments without retraining from scratch.

3.1 Model Description
Our framework includes three sets of latent variables: Z,T ,
and C, where T = {tj}mj=1 is the representation of treat-
ments, C = {cj}mj=1 is the cluster assignment of the treat-
ments, each cj is an one-hot vector and cj,k = 1 denotes that
treatment j belongs to cluster k. As shown in Fig. 1, the
distribution p(A,C,T,Z) can be factorized as:

p(Θ) =
∏

i,j
p(Ai,j |Zi,Tj ,Cj)p(Cj)p(Tj |Cj)p(Zi), (1)

where Θ = {A,C,T,Z}. Assume that the treatments can
be divided into K clusters, we then divide the treatment as-
signments intoK groups corresponding to the treatment clus-
ters. The confounders are learned separately for the treat-
ment assignments in each group for a macro-level disentan-
glement. The confounder representation learned from the as-
signment of treatments in cluster k is denoted by Z(k) =

{z(k)1 , z
(k)
2 , ..., z

(k)
n }. Each Z

(k)
i is assumed to follow an

isotropic unit Gaussian prior: Z
(k)
i ∼ N (0, I). Thus the dis-

tribution in Eq. (1) can be further factorized as:

p(Θ)=
∏
i,j

p(Ai,j |Zi,Tj ,Cj)p(Cj)p(Tj |Cj)
K∏
k=1

p(Z
(k)
i ).

(2)
An illustration of the proposed framework DIRECT is shown
in Fig. 2, which follows a classical VAE architecture with the
inference network and the generation network. The inference
network infers the variational distributions of treatments and
confounders based on the treatment assignment. The gener-
ation network reconstructs the input (i.e., treatment assign-
ment), and predicts the potential outcome of each instance.

3.2 Inference Network
Since the true posterior distribution of the latent variables
q(Z,T,C|A) is intractable, we use an inference network to
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Figure 1: Causal graph of the
studied problem.
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Figure 2: An illustration of the proposed framework DIRECT. It consists of two essential components:
inference network and generation network.

approximate it based on the mean-field approximation. The
approximate posterior q(Z,T,C|A) can be factorized as:

q(Z,T,C|A)=

m∏
j=1

q(Tj |a∗,j)q(Cj |Tj)
n∏
i=1

K∏
k=1

q(Z
(k)
i |ai,∗).

(3)
We learn the representations of treatments and confounders
through the variational inference mentioned above, where ∗
represents all the indices, e.g., ai,∗ refers to ai,1, ...,ai,m.

Treatment Representation Learning
The proposed framework explicitly learns the treatments’
representations from the observed treatment assignments.
Specifically, the inference network specifies the form of the
variational distributions of Tj to be Gaussian posteriors:
q(Tj |a∗,j) = N (µT (a∗,j), diag(σ2

T (a∗,j))). In the infer-
ence network, the mean and variance of the posterior are in-
ferred by two separate neural network modules µT (·) and
σT (·). We assume that the representations of treatments
in the observational data have an inherent cluster structure
composed with K components, where K is a hyperparam-
eter. A clustering module is introduced in the inference
network to approximate the cluster distribution q(Cj |tj) =
Mult(fc(tj)), where fc(·) is a function of the clustering
module. The output of fc(·) is aK-dimensional vector, where
each element inside corresponds to the probability that the
treatment belongs to each cluster. And the multinoulli dis-
tribution is implemented by a softmax layer. To enable clus-
tering, the inference network specifies the prior of Tj to be
N (µcj , diag(σ2

cj )), where µcj and σcj are parameters to be
learned, referring to the mean and variance of the distribution
of treatments in the cluster containing the j-th treatment. As
the latent variable Cj is discrete, the reparameterization trick
based sampling is not differentiable for backpropagation, thus
we apply Gumbel-Softmax sampling [Jang et al., 2016] to ap-
proximate samples from the categorical distribution.

The treatment representation learning module enables the
model to handle unseen treatments. For a new treatment
m + 1, we can obtain its representation tm+1 and predict
its cluster based on its treatment assignments and the trained
model. Then, the potential outcome of those treatment as-
signments which involve the new treatment can be predicted

with tm+1 and the learned confounder representations.

Disentangled Confounder Representation Learning
Inspired by [Ma et al., 2019], we learn disentangled rep-
resentations of the confounders at two different levels. At
the macro-level, the treatment assignment is divided into
K groups according to the sampled C. We learn the rep-
resentation Z(k) of confounders from each group k sep-
arately, and the final representation Z is the concatena-
tion of Z(1), ...,Z(K). Specifically, the learned Zk is ex-
pected to correspond to the treatments in cluster k. For each
Zk, we infer the posteriors distributions as: q(Z(k)

i |ai,∗) =

q(Z
(k)
i |a

(k)
i,∗ ) = N (µI(a

(k)
i,∗ ), diag(σ2

I (a
(k)
i,∗ ))), where a(k)

i,∗ is
the i-th instance’s treatment assignment which only contains
the treatments in cluster k. µI(·) and σI(·) are two neural
network modules to infer the mean and variance of the dis-
tribution of q(Z(k)

i |a
(k)
i,∗ ), respectively. At the micro-level, to

achieve disentanglement among dimensions of learned rep-
resentations, we specify a weight β � 1 for the Kull-
back–Leibler (KL) divergence between the isotropic unit
Gaussian prior and the learned distribution of each Z(k) to
encourage the dimensions to reflect isolated latent factors.

3.3 Generation Network
In the generation model, we reconstruct the treatment assign-
ment with a neural network module fa: p(Ai,j |zi, tj , cj) =
Ber(sigmoid(fa(cj , zi, tj))).We use a sigmoid layer to map
the output of network fa(·) into (0, 1) as the probability of
taking the treatment ai,j . In order to better capture the latent
confounders, we also use the observed outcomes as a super-
vision signal. Specifically, we use a neural network module
fy(Zi,Ai,T) to predict the potential outcome yi(a) for any
treatment assignment a. We assume the prediction Ŷi(a) fol-
lows the Gaussian distributionN (yi(a), σ2

e), where σ2
e is the

variance of the prediction error. We use the observed out-
come yi as target and minimize the outcome prediction loss:
Ly = −

∑n
i=1 log p(Ŷi = yi|zi,ai,T ).

3.4 Optimization
Following the classical VAE schema, the evidence lower
bound (ELBO) LELBO can be derived as (the subscript q
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Dataset Synthetic Amazon-3C Amazon-6C

# of instances 2, 500 3, 000 6, 000
# of treatments 500 104 325
# of clusters 4 3 6
Avg ratio of treated 42.3% 21.4% 18.6%

Table 1: Detailed statistics of the datasets.

denotes q(Z,T,C|A) by default, and we drop the instance
index i and treatment index j for notation simplicity):

Eq[log p(A|Z,T,C)]−KL(q(Z,T,C|A)||p(Z,T,C))

= Eq[log p(A|Z,T,C)]− Eq(T|A)KL(q(C|T)||p(C))

− Eq(C|T)KL(q(T|A)||p(T|C))

−
K∑
k=1

Eq(T|A)q(C|T)KL(q(Z(k)|A)||p(Z(k))). (4)

The ELBO consists of the reconstruction term and the KL
term, which contains three terms: 1) the clustering prior term,
where we use the uniform prior; 2) the treatment prior term,
which drives the treatment clustering as described in the sec-
tion of treatment representation learning; 3) the confounder
prior term, which leads to disentanglement among dimen-
sions by utilizing the isotropic nature of the prior. It is im-
practical to calculate the expectations over the variational dis-
tribution analytically, thus these terms are instead estimated
by Monte Carlo samples from q(Z,T,C|A). By putting all
the aforementioned components together, we obtain the loss
function of the proposed framework:

L =− Eq[log p(A|Z,T,C)] + Eq(T|A)KL(q(C|T)||p(C))

+ Eq(C|T)KL(q(T|A)||p(T|C)) + λLy

+ β

K∑
k=1

Eq(T|A)q(C|T)KL(q(Z(k)|A)||p(Z(k))). (5)

Hyperparameters β and λ are used to control the effect of
different parts of the objective function.

4 Experiments
4.1 Datasets
We evaluate the proposed method on one synthetic dataset
and two semi-sythetic datasets from real-world scenarios.
The detailed statistics of these datasets are shown in Table 1,
including the number of instances, treatments, treatment clus-
ters, and the average ratio of treatments assigned to instances.
Synthetic Dataset. We first conduct experiments on a syn-
thetic dataset. This dataset is generated as follows:

Z
(k)
i ∼ N (0, I), Cj ∼Mult(π),

Tj |cj ∼
∏K

k=1
N (µk, diag(σ2

k))cj,k , µk ∼ N (0, I),

σk ∼ rand(0, I),Ai,j ∼ Ber(sigmoid(z
(cj)
i tj)), (6)

where i = 1, ..., n and j = 1, ...,m, π is a K-dimensional
vector, corresponding to the probability that the treatment be-
longs to each cluster. We set dI (the dimension of each z(k)i )

and dT (the dimension of Tj) both as 20. The potential out-
come of instance i under a treatment assignment a is simu-
lated as yi(a) = aTTW1zi, where zi is the concatenation
of z(k)i (k = 1, ...,K), and T = [t1, ..., tm]T . W1 is a matrix
of parameters with dimensions dT ×KdI .

Real-world Datasets. It is notoriously hard to obtain the
ground truth treatment effect as we only observe one of the
potential outcomes for each instance. Thus, we create two
semi-synthetic datasets (Amazon-3C and Amazon-6C) based
on the real-world Amazon review data2. In each dataset, we
select three/six categories of items. In each category, we se-
lect the top-1000 products with the highest number of reviews
as instances. We aim to investigate the effect of the keywords
in reviews on the future sales of each product: (1) Treatment:
We first generate a dictionary of keywords by performing un-
supervised feature selection [Li et al., 2017] on the bag-of-
words features of reviews, then randomly select three words
from the dictionary as a treatment, (e.g., if an item receives
reviews containing all the three words in a treatment, then
we say the treatment is assigned to the item). (2) Potential
outcome: The future amount of sales of each product is the
outcome and is simulated in the same way as that for the syn-
thetic data. (3) Condounders: The confounders are the latent
attributes of the products, which affect what words would ap-
pear in the reviews, as well as the product sales. We simulate
the confounders by training a neural network to fit the treat-
ment assignment, and take the output of a middle layer as
confounders, then use it to simulate the potential outcome.

4.2 Experiment Settings
To evaluate our proposed framework in MTE estimation,
we compare it with several state-of-the-art baselines in the
following three categories: (1) traditional regression meth-
ods: least square regression (OLS/LR) and random for-
est (RF). These methods can take treatment assignment as
features and predict the outcomes; (2) representation learn-
ing based ITE esitmation methods for single treatment:
Causal Effect Variational Autoencoder (CEVAE) [Louizos
et al., 2017], Treatment-Agnostic Representation Network
(TARNet) [Shalit et al., 2017], and counterfactual regression
with Wasserstein metric (CFR) [Shalit et al., 2017]. (3) Mul-
tiple treatment effect estimation methods: Bayesian Additive
Regression Trees (BART) [Hill, 2011] – though widely used
in single-cause ITE estimation, can be naturally extended to
multi-treatment setting by extending the input vectors in the
Bayesian regression tree. Multi-cause deconfounder [Wang
and Blei, 2019] utilizes the dependencies among the assigned
causes to capture the confounders. We apply two different
forms (linear and quadratic) in the potential outcome predic-
tion, denoted as Deconf-l and Deconf-q respectively. As an
ablation study of our proposed method, we disable the disen-
tanglement by setting K = 1 and β = 1.0, maintaining the
same dimension of representation. This variant of our method
is denoted by DIRECT-ND.

Setup. Each dataset is randomly split into 60%/20%/20%
training/validation/test set. Unless otherwise specified, hy-

2http://jmcauley.ucsd.edu/data/amazon/index 2014.html
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Method Synthetic Amazon-3C Amazon-6C
PEHE εATE PEHE εATE PEHE εATE

OLS/LR 10.07± 1.28 5.31± 0.88 11.15± 1.93 5.21± 1.13 11.27± 1.48 6.51± 0.52
RF 10.26± 1.23 5.22± 0.64 10.25± 1.81 5.17± 0.75 10.53± 1.62 5.82± 0.41
CEVAE 16.58± 1.99 7.38± 0.51 19.11± 1.21 9.93± 0.69 17.52± 0.92 8.08± 0.26
TARNET 12.07± 1.30 5.77± 0.84 9.27± 1.26 5.12± 1.24 9.51± 0.34 4.31± 0.20
CFR 12.78± 1.49 6.03± 0.94 8.37± 0.43 3.92± 1.04 9.32± 0.92 4.29± 0.19
BART 10.92± 2.20 5.30± 1.05 9.91± 1.77 6.03± 1.49 11.02± 2.15 5.11± 1.41
Deconf-l 8.26± 1.37 3.16± 0.24 7.34± 0.48 3.86± 0.41 8.16± 0.65 4.53± 0.53
Deconf-q 8.54± 1.28 3.42± 0.33 7.18± 0.52 3.21± 0.30 8.68± 0.72 4.25± 0.28
DIRECT-ND (ours) 4.91± 0.36 2.26± 0.08 5.89± 0.34 2.85± 0.16 6.37± 0.13 3.38± 0.12
DIRECT (ours) 3.42± 0.12 1.33± 0.08 4.57± 0.31 2.04± 0.14 5.04± 0.09 2.37± 0.08

Table 2: Performance of multiple treatment effect estimation for different methods.

Treatment Hold out 20% Together
PEHE εATE PEHE εATE

Synthetic 3.21± 0.07 1.26± 0.05 3.04 ± 0.08 1.22 ± 0.05
Amazon-3C 4.62± 0.48 2.30± 0.13 4.59 ± 0.55 2.24 ± 0.41
Amazon-6C 5.41± 0.09 2.52± 0.12 5.23 ± 0.12 2.49 ± 0.13

Table 3: Model generalization for new treatments.

perparameters are set as β = 20, λ = 0.4. By default, we set
K as the same number of true treatment clusters, then we al-
ter K to test the performance and disentanglement in Section
4.4. All the results are averaged over ten executions.

Metrics. Two evaluation metrics are widely used in treat-
ment effect estimation – Rooted Precision in Estimation of
Heterogeneous Effect (PEHE) [Hill, 2011] and Mean Abso-
lute Error on ATE (εATE) [Willmott and Matsuura, 2005].
Following [Saini et al., 2019], we extend them into the
multi-treatment setting. The evaluation is performed on a
predefined set of R different treatment assignments, A =
{a1, ...,aR}, where 0 < R < 2m. For each ar ∈ A,
we have: PEHEr =

√∑n
i=1(τi,ar − τ̂i,ar )2/n, where

τ̂i,ar = ŷi(a
r) − ŷi(0) is the predicted treatment effect

over ar. The average over the R treatment assignments
is: PEHE = 1

R

∑R
r=1 PEHE

r. Similarly, another metric
εATE can also be extended to the multiple treatment setting:
εATE = 1

R

∑R
r=1 |

1
n

∑n
i=1 τi,ar − 1

n

∑n
i=1 τ̂i,ar |.

4.3 MTE Estimation
To evaluate the proposed method in MTE estimation, we
compare it with the aforementioned baselines. CEVAE, TAR-
NET and CFR are designed for single cause ITE estimation,
following [Yoon et al., 2018], we apply them into multi-cause
setting: we randomly select three treatments, choose the as-
signment {0, 0, 0} as the control group, and other seven treat-
ment assignments as treated group. In this way, we create
seven separate single cause ITE estimation tasks, and calcu-
late the averaged PEHE and εATE over the seven tasks.We
show the results of all methods when we randomly select
three treatments in Table 2. We observe that DIRECT con-
sistently outperforms the baselines. The regression methods
OLS/LR and RF cannot capture the confounders and thus suf-
fer from the confounding bias. CEVAE, TARNET and CFR

(a) Ground-truth clusters (b) Predicted clusters

Figure 3: Treatment clusters in the synthetic dataset.

model each treatment separately, thus cannot capture the de-
pendency among treatments. BART is limited in the strong
ignorability assumption. Deconf-l and Deconf-q may cap-
ture latent confounders by utilizing the assignment of multi-
ple treamtents, but they do not utilize the observed outcome,
and also lack disentanglement, which is also the limitation
of DIRECT-ND. We attribute the superiority of DIRECT to
two key factors: (1) our framework leverages the multiple
treatment assignment and observed outcome to capture more
latent confounders; (2) the disentangled representation often
leads to higher performance, which is in line with the conclu-
sion in [Ma et al., 2019].

Generalization for New Treatments. We assess how the
proposed framework can be generalized to predict the effects
of treatments that are unseen in the training data. Since none
of the baseline methods can handle unseen treatments, in each
dataset, we randomly hold out 20% treatments and compare
the performance of our framework in predicting the causal ef-
fect of the treatment assignment over the held out treatments
with/without their assignment data. The results in Table 3
show that our model can achieve comparable performance
for new treatments without retraining, which benefits from
the trainable network for treatment representation learning.

4.4 Disentanglement & Interpretability
We visualize the treatment representation and color them
w.r.t. their true/predicted clusters in Fig. 3. We observe
that the predicted clusters are very close to the ground-truth.
As the treatments’ representation is aligned with the con-
founders’ representation, it indicates good macro-level dis-
entanglement of the representations of confounders. Due to
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Figure 4: MTE estimation performance w.r.t. different levels of dis-
entanglement of the representations of confounders.

space limit, we only show the results in the synthetic dataset,
but the observations are similar in other datasets.

To investigate the relation between the disentanglement of
confounders’ representations and the MTE estimation perfor-
mance, we vary the hyperparameter K and β to control the
level of disentanglement, and Fig. 4 shows how the estima-
tion performance varies w.r.t. different levels of disentangle-
ment of the confounders’ representations. Here the level of
disentanglement of representation with dimension d is calcu-
lated by 1 − 2

d(d−1)
∑
i,j |corr(i, j)|, where corr(i, j) is the

correlation between dimension i and j. Due to space limit, we
only show the results on datasets Synthetic and Amazon-3C,
but similar observations can be found on the other dataset.
As shown in Fig. 4, treatment clustering (K > 1) benefits the
disentanglement, and higher levels of disentanglement often
leads to better MTE estimation performance.

To further show the interpretability of the learned disentan-
gled representations, we investigate their semantics in micro-
level. On Amazon-3C, after training, we use a similar way to
evaluate the micro-level disentanglement as [Ma et al., 2019;
Wang et al., 2020]. We modify one dimension of the learned
confounder representations by multiplying it with a temper-
ature factor τ = 10, while keep all other dimensions fixed.
Then we list the treatments with the biggest changes w.r.t.
the predicted treatment assignment after modification in Ta-
ble 4. Generally, we have two observations: 1) the treatments
that are significantly affected can match the cluster of the
modified dimension. This indicates a high-level interpreta-
tion, e.g., when we modify a dimension in z(k), most of the
top influenced treatments are about the musical instruments.
This may imply that the cluster k corresponds to latent at-
tributes related to musical instrument products; 2) most of
the top influenced treatments contain a common word or se-
mantically related words, which indicates that the model can
capture the fine-grained latent factors by disentangled rep-
resentation, e.g., when we modify a dimension, the top in-
fluenced treatments share the word “tune”, which provides
human-understandable semantics for the modified dimension.

5 Related Work
Multiple Treatment Effect Estimation. Traditional meth-
ods for the single cause can be extended to the multi-cause
setting [Lopez et al., 2017; Zanutto et al., 2005; Lechner,
2001], and recent work [Sharma et al., 2020] applies the neu-
ral network. However, these works are still based on the

Manipulated
dimension Top-5 treatments

In Cluster 1
tune tune loud tune finger

musician tuner tune bass player
capo recording bass price tune

In Cluster 2
size long longer sizing size

sizing size little felt longer
width old classic price feel

In Cluster 3
battery long headphone light access
charge battery battery charger connect
phone old quick cost battery

Table 4: Examples of the top-5 influenced treatments after modify-
ing a dimension of confounder representation.

strong ignorability assumption. To mitigate this problem, a
relaxed assumption called single strong ignorability is pro-
posed in [Wang and Blei, 2019] for the multi-cause scenar-
ios, which assumes that there do not exist unobserved single-
cause confounders that causally affect the outcome and only
one of the treatments. Despite its success in applications such
as recommender systems [Wang et al., 2018] and medica-
tion analysis [Zhang et al., 2019], their captured latent con-
founders might be highly entangled and hard to interpret.
Disentangled Representation Learning. Disentangled
representation learning has attracted significant attention
recently. [Ma et al., 2019] introduces a macro-micro
disentangled representation learning framework for recom-
mender systems, which achieves macro disentanglement
by inferring high-level user intentions and micro disen-
tanglement to force each dimension capture an isolated
factor. We use a similar way of hierarchical disentangle-
ment but focus on the causal inference domain. In causal
inference, a line of work [Hassanpour and Greiner, 2019;
Zhang et al., 2020] identifies disentangled representations
to separate the latent factors which influence the treatment
assignment, the outcome, or both of them. Our work differs
from them as the disentanglement in our work focuses on the
confounders mixed in hierarchical patterns.

6 Conclusion
In this paper, we study a novel problem of disentangled mul-
tiple treatment effect estimation, and analyze its importance
and challenges. We develop a novel framework DIRECT to
learn disentangled representations of latent confounders for
MTE estimation. Specifically, we improve the interpretability
of the learned representations of confounders at both macro
level and micro level. Then, we learn a trainable function
to obtain the representation for each treatment by leveraging
their inherent dependencies, which can be further generalized
to unseen treatments. We conduct extensive experiments on
different datasets, and the experimental results validate the
effectiveness and interpretability of our proposed framework.
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