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ABSTRACT

A key barrier to applying any smart technology to a building is

the requirement of locating and connecting to the necessary re-

sources among the thousands of sensing and control points, i.e., the

metadata mapping problem. Existing solutions depend on exhaus-

tive manual annotation of sensor metadata — a laborious, costly,

and hardly scalable process. To reduce the amount of manual ef-

fort required, this paper presents a multi-oracle selective sampling

framework to leverage noisy labels from information sources with

unknown reliability such as existing buildings, which we refer to

as weak oracles, for metadata mapping. This framework involves

an interactive process, where a small set of sensor instances are

progressively selected and labeled for it to learn how to aggregate

the noisy labels as well as to predict sensor types.

Two key challenges arise in designing the framework, namely,

weak oracle reliability estimation and instance selection for query-

ing. To address the first challenge, we develop a clustering-based

approach for weak oracle reliability estimation to capitalize on

the observation that weak oracles perform differently in differ-

ent groups of instances. For the second challenge, we propose a

disagreement-based query selection strategy to combine the poten-

tial effect of a labeled instance on both reducing classifier uncer-

tainty and improving the quality of label aggregation. We evaluate

our solution on a large collection of real-world building sensor data

from 5 buildings with more than 11, 000 sensors of 18 different types.

The experiment results validate the effectiveness of our solution,

which outperforms a set of state-of-the-art baselines.

KEYWORDS

Selective sampling, label aggregation, sensor type classification,

smart buildings

1 INTRODUCTION

Hundreds of organizations have participated in the Better Build-

ings Initiative [10] to reduce the energy footprints of commercial

buildings; and the investment in smart building technologies has

soared from 1 billion to 19 billion dollars since 2012 [36]. Despite

being effective in reducing energy consumption, these technolo-

gies [2, 5, 13, 16] are adopted still in less than 20% of the build-

ings [42]. A key barrier to applying any smart technology to a

building is the requirement of locating and connecting to the neces-

sary resources among the thousands of sensing and control points.

For example, an application that monitors and controls the tem-

perature of a room needs to access the temperature sensor and the

temperature setpoint of the room. Doing so requires the capability

to interpret the context of the sensors including their type, location,

etc, often referred to as the metadata. Unfortunately, this metadata

is historically not designed for automated machine parsing and

Table 1: Examples of sensor names of temperature sensors

in different buildings.

Building Sensor Name

A RM511A Zone Temp 3

RMI1071 Space Temperature Local

B SDH_SF1_R282_RMT

SDB_KETI_413_temperature

C SODA1C600A_ART

SODA1R438__ART

D EBU3B.RM-B215..ZN-T

EBU3B.Unknown..ZN-T

E AP_M.RM-B301.ZN-T

RM-5441.ZN-T

exists in disparate formats across buildings. For example, Table 1

shows a few examples of room temperature sensor names from

different buildings: the concept of temperature is encoded with

various distinct phrases – Temperature, Temp, RMT, ART, and ZN-T.
The metadata thus requires significant manual effort to parse, and

it often takes weeks. This manual process is fundamentally not

scalable, and calls for automated mapping solutions.

While industry-wide standards [1, 3] provide a common ground

for creating metadata in new buildings, legacy buildings still take a

significant share of the market and require manual work for meta-

data interpretation and conversion. Various solutions have thus

been proposed to parse and extract the metadata, including their

type [4, 18, 19, 22, 37], location [20, 23], and relationships with

each other [24, 33, 38]. While a few [18, 39] focus on supervised

approaches that require a considerable set of training examples, the

majority [4, 7, 22, 25] is built upon a semi-supervised technique – ac-

tive learning. Such solutions involve progressively selecting a small

set of representative examples and acquiring their labels1. These

methods have achieved promising results and can significantly re-

duce the required manual effort. However, they all fundamentally

rely on the availability of infallible experts, such as a building man-

ager, to provide correct labels for a small set of sensor metadata. Not

only is it almost never possible not to make mistakes as a human,

but also the cost of employing a human expert is prohibitive.

In this work, we seek to relax the strict dependence on an infal-

lible human labeler as explored by the aforementioned work, and

explore the value of imperfect information sources for metadata

extraction. A key intuition is that, aside from resorting to a costly

human annotator, there are often abundant cost-free information

sources, such as classifiers trained on another labeled building,

which we can leverage as weak oracles to annotate the sensors in

1For example, the label for “RM511A Zone Temp 3” would be temperature sensor.
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the target building. The term oracle refers to an information source;

and leveraging such low-cost weak oracles helps reduce the de-

pendence and burden on perfect human annotators. Technically, it

is a branch of multi-oracle selective sampling problem [11], which

extends conventional active learning by leveraging weak oracles

aside from an omnipotent expert.

In practice of metadata mapping, each weak oracle is likely to be

good at recognizing only certain types of sensors in a new building.

For example, buildings in similar geographical regions might ex-

hibit similar patterns in the readings of sensors measuring ambient

temperature or light level, while in buildings with similar equip-

ment configurations, similar operation patterns might manifest.

Therefore, when leveraging different types of weak oracles, we

would need to identify their output’s trustworthiness in the new

building, i.e., what types of sensors they can confidently predict

for. However, as we do not know the best matching between weak

oracles and sensors in a new building beforehand, it remains a

challenge to uncover the underlying groups and further measure

each weak oracle’s reliability in predicting for each group.

In this paper, we propose an iterative algorithm that synergizes

a strong oracle (e.g., a human expert) and multiple weak oracles

(e.g., classifiers trained on existing labeled buildings) to further

reduce the manual effort required for extracting metadata. We

specifically focus on inferring a key kind of metadata – sensor

type (e.g., temperature, co2, airflow volume, etc). In particular, in

addition to employing a classical active learning procedure which

iteratively selects an example for manual labeling, in each iteration,

we also use label from the strong oracle to help estimate each weak

oracle’s reliability in the building.

While both strong and weak oracles are involved, it is notewor-

thy that our work is not a trivial combination of these two sources of

information. Particularly, we need to address two major challenges.

First, each weak oracle might have different predictive capabilities

in different groups of sensors. However, existing methods evaluate

the performance of weak oracles globally, which limits our use of

knowledge of weak oracles about different sensors. To address this

challenge, we take a divide-and-conquer approach to estimate each

weak oracle’s reliability in different clusters of sensors, and identify

the clusters on the fly. For each sensor, we then aggregate all the

noisy labels from weak oracles into one most probable label based

on their reliability. Second, the criterion for selecting instances for

labeling relies on two different components – the classifier trained

using labels from strong oracle and the labels aggregated fromweak

oracles – whose objectives are often met in isolation. The query

to strong oracle usually depends only on the informativeness of

a sample considering its features, while label aggregation evalu-

ates the informativeness only based on weak oracles’ responses. To

reconcile these different targets, we make two key considerations

into selecting an instance for labeling — how much the instance

benefits the classifier training and also how much it improves the

reliability estimation of the weak oracles. In this way, our method

distinguishes itself from prior strategies that focus either on only

improving classifier learning [8, 11, 12, 17, 22], or on estimating the

reliability of weak oracles [35, 40]. As we accumulate more labels

from the strong oracle, we can progressively improve our estimate

of the weak oracle’s reliability, and therefore more effectively com-

bine their strengths across different groups of sensors to obtain

more accurate labels. On the other hand, the improved aggregated

label in turn boosts classifier training for the new building.

We demonstrate the effectiveness of our approach by evaluating

it on a real-world benchmark building dataset [26]2, which contains

one-week data for over 11, 000 sensors in 5 commercial buildings

across 3 college campuses. We conduct extensive experiments and

compare our proposed approach with a set of state-of-the-art so-

lutions. The experiment results show that our proposed method

performs significantly better on sensor type classification, i.e., with

much fewer human labels required to achieve the same level of

accuracy. Our main contributions can be summarized as follows:

• We address the problem of building sensor type classification by

proposing a selective sampling framework which leverages the

noisy labels collected from multiple weak oracles.

• We develop a clustering-based estimationmethod to identify each

weak oracle’s reliability in different groups of sensors, which

delivers deeper insights about the expertise of weak oracles, and

thus benefits label aggregation.

• We explore a disagreement-based strategy to select the most

useful instances by jointly considering the representativeness of

the instance and the disagreement between the aggregated labels

and the classifier’s prediction.

2 BACKGROUND AND RELATEDWORK

In this section, we introduce the problem of sensor metadata in-

ference in buildings, and the recent advances on this topic. This

serves as the basis for our developed solution in this work.

2.1 Metadata Challenge

The context of sensors is usually described in point names, or

referred to as metadata, which are often a concatenation of abbre-

viations encoding contextual information. For example, as shown

in Table 1, a sensor name SODA1C600A_ART conveys: SOD - building
name, A1 - air handling unit id, C600A - room id, and ART - type of
measurement. The naming convention and rules used in generating

these point names vary from vendor to vendor, thus requiring effort

to interpret on a per-building basis. However, point names do not

necessarily contain all the information required. Not only because

the metadata can be incomplete, such as EBU3B.Unknown..ZN-T in
Table 1, but also these point names need update, as buildings are

upgraded or applications evolve over time.

A lack of capability to automatically parse and interpret sensor

context has been long standing in the way of revolutionizing build-

ings at scale. Commercial smart building solutions have started to

prevail (Panoptix, APOGEE, Talisen Technologies, etc), but they

still rely on proprietary tools like Niagara to interpret and map

the metadata, involving significant manual effort. Moreover, anec-

dotally, labeling one single point usually takes a few minutes and

sub-hundred dollars. Our proposed solution would ideally reduce

this manual effort to the minimum.

2.2 Related Work

Despite the existence of standard schemas [1, 3, 6], extracting key

contextual information about sensors and actuators in a building,

2The dataset and code for reproducing results in this paper are readily available on
github.
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especially the legacy ones, and mapping it to a schema still remain a

laborious manual process. Significant advances have been achieved

recently in sensor metadata extraction. The majority of these works

build upon active learning to reduce manual effort. Bhattacharya

et al. [7] propose to iteratively learn a set of regular expressions to

parse sensor names and convert them into a common name space.

Hong et al. [22] develop a clustering-based active learning method

to select the most informative sensors for classifier training and

as well propagate the labels to similar instances. Balaji et al. [4]

formulate a similar approach by employing hierarchical clustering

to group sensor names and labeling one instance from each group.

Koh et al. [25] explore a multi-stage active learning mechanism

involving conditional random fields and multilayer perceptron to

learn the representation of metadata structure for labeling sensors.

These active learning based methods have shown promising results

in reducing the required manual labeling effort, yet they rely on

an omnipotent expert to provide correct labels for queried exam-

ples. In this work, we demonstrate that, aside from the infallible

experts, other information sources with unknown reliability, also

called weak oracles, such as classifiers trained on existing buildings,

can also be utilized to help construct an accurate model to extract

metadata for a new building. While we particuarly consider type

classification in this work, our proposed methodology is comple-

mentary to the aforementioned work that extracts information in

addition to types [7, 25].

In a related line of research, Hong et al. [21] introduce a transfer

learning based technique that adapts knowledge from existing la-

beled buildings to a new one for classifying sensor types. However,

they only estimate the quality of transferred labels once at the be-

ginning of their procedure and then combine these labels to predict

the type for a subset of sensors in the new building. By contrast, in

our approach, we continuously update the estimate of weak oracles’

reliability and also use the labels from weak oracles to facilitate

classifier training. The weak oracles benefit our learning process in

two aspects by: 1) helping to better estimate the informativeness

of instances for selection; 2) providing additional labels for classi-

fier training to complement the trustful but costly strong oracle.

As for the instance selection strategy, most active learning meth-

ods [4, 8, 22] use the prediction uncertainty about instances from

the learnt classifier; we also leverage the weak oracles to measure

the informativeness of instances.

The key in utilizing noisy labels from weak oracles depends on

the aggregation rule, i.e., how to combine the noisy labels from

each weak oracle; and there have been extensive studies in crowd-

sourcing aiming to effectively infer high-quality labels from noisy

responses [41, 43, 46]. For example, weighted majority voting and

Bayesian voting [9, 30, 32] are proposed to model the ability of dif-

ferent labelers. In recent years, increasing attention has been paid

to combining active learning and these label aggregation methods

[14, 44]. But most of these studies do not assume the existence of

a strong oracle, and the active selection is only about which weak

oracle to use for labeling an instance. Even if they have access to

a strong oracle, the obtained labels from the strong oracle are not

used to refine the aggregated labels. To further promote the inter-

action between active learning and label aggregation, we develop

a framework which allows online updates of the parameters for

weak oracle evaluation.

As noted in the truth discovery work [28], real-world informa-

tion sources have different domains of expertise and biases, their

performances differ on different groups of tasks. Zhang et al. [45]

proposes a simple yet effective method to analyze the reliability

of labelers by clustering the instances based on their responses.

To identify each weak oracle’s area of expertise, we also explore

clustering-based label aggregation and combine it with the learning

process in selective sampling.

3 METHODOLOGY

In practice, aside from the labels returned by reliable domain experts

for sensor metadata mapping, there are also abundant information

sources to harvest – for example, the labels provided by a group

of non-experts, or the labels transferred from other buildings with

similar configurations or location. Although these labels do not

perfectly apply to a new building, hence considered “noisy", the easy

access to such information sources provides a more cost-effective

way to extract building metadata.

In this work, we focus on an important category of metadata

mapping – sensor type classification. We propose a selective sam-

pling framework (SS) to aggregate labels from a set of weak oracles

by iteratively interacting with a strong oracle. The aggregated la-

bels complement the expensive labels from the strong oracle for

type classifier training: the framework continuously selects the

most “informative” instance to query the strong oracle, and the ac-

quired strong label simultaneously improves weak oracle reliability

estimation and type classifier training. In this section, we provide

details of the proposed solution framework.

3.1 Overview of the Framework

We first formally define the notations to be used in describing

the proposed framework. We have a strong oracle O0 which can

always provide correct sensor types as labels, andM weak oracles

{O1,O2, ...,OM } with unknown reliability. For weak oracle Ok , its

label accuracy is denoted asw(k ) ∈ [0, 1]. The strong oracle could
be a domain expert, while the weak oracles could be non-experts or

even statistical classifiers transferred from other buildings. Let us

consider a set of N instances of sensor points D = {x1,x2, ...,xN }
with J different classes of sensor types. Each sensor point xi is
characterized by its point name string and time series readings,

upon which we draw features to represent the point. We will refer

to the features created from point name strings as name features

and those from time series readings as data features. The sensor

type of xi is denoted by its true label yi , while the noisy labels for
xi obtained from weak oracle Ok , also referred to as responses, are

marked as r
(k )
i , and we denote ri = {r

(k )
i |k = 1, ...,M}.

In this work, we assume the labels from weak oracles are free,

and the labels from the strong oracle have the same unit cost. We

leave the setting where different oracles have different labeling

cost as our future work. The goal of the framework is to estimate

a classifier f : f (x) → y with respect to a training set Dtrn , so

as to maximize the classifier’s type classification accuracy while

minimizing the cost in creatingDtrn . We denote the set of instances

with labels from the strong oracle as Ds , and the set of instances

with no strong labels as Du = D − Ds . Since points with similar

name features tend to share the same label, we adopt the label

243

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 01,2021 at 02:31:14 UTC from IEEE Xplore.  Restrictions apply. 



Figure 1: Overview of our selective sampling framework for sensor metadata inference: A) The Query Selection component

samples the most informative instances and acquires their true labels from an infallible expert; B) The Label Aggregation

component takes advantage of the noisy labels collected from multiple weak oracles to infer the true sensor labels.

propagation technique described in [22] to propagate the labels of

instances in Ds to their neighbors in the feature space. As a result,

we denote the set of instances in Du with propagated labels as Dp .

The study in [22] shows that the propagated labels have very high

accuracy and can thus be regarded as reliable. For each instance,

the noisy labels from weak oracles are aggregated to infer the most

likely label. The probability of the aggregated label being correct is

referred to as the confidence. In D − (Ds ∪ Dp ), the set of instances

with aggregated labels from weak oracles above a given confidence

threshold is denoted as Dw . The relationship of these notations is

shown in Figure 2.

Figure 1 illustrates the workflow of our selective sampling frame-

work, which contains two major components: query selection and

label aggregation. As we assume the weak oracles are free to query,

in the query selection component, we only select the most “infor-

mative” instances to be labeled by the strong oracle, and query all

instances to the weak oracles. The label aggregation component

collects noisy labels from weak oracles and infers the true sensor

types based on its reliability estimation of these weak oracles. Both

the true labels from strong oracle and the aggregated labels from

weak oracles are used for training the sensor type classifier.

3.2 Clustering-based Label Aggregation

With access to the noisy labels from weak oracles, an effective label

aggregation method is important for integrating these responses

and inferring the true sensor types. To this end, we adopt an iterative

weighted majority voting (IWMV) method [31] to evaluate the

reliability of the weak oracles and infer the true labels from the

noisy labels. IWMV is based on a weighted voting scheme, where

the aggregated label is calculated by

ŷi = argmax
j ∈{1, ..., J }

M∑
k=1

v(k )I(r
(k )
i = j), (1)

where I(·) is an indicator function. IWMV defines a voting weight

v(k ) for each weak oracle Ok to measure its contribution to label

aggregation, and v(k ) is computed based on the estimated accuracy

Figure 2: Illustration of different sets of instances.

w(k ) of weak oracle Ok . Intuitively, a more accurate weak oracle

should have a higher weight in determining the final aggregated

label of an instance. The model employs an iterative procedure to

estimate the accuracy of weak oracles and infer the true labels. In

each step, IWMV predicts the label by Eq. (1), then the maximum

likelihood estimation of weak oracle’s accuracy is calculated as:

ŵ(k ) =

∑N
i=1 I(r

(k )
i = ŷi )∑N

i=1Tik
, (2)

whereT is the observational matrix, andTik = 1 when weak oracle
Ok gives a label for instance xi , otherwise Tik = 0. Based on the
weak oracle’s accuracy estimated by Eq. (2), the voting weight is

computed as:

v(k ) = Jŵ(k ) − 1. (3)

The process runs iteratively until it converges or reaches the maxi-

mum number of iterations.

Based on the above IWMV method, for instance xi and its asso-

ciated weak responses {r
(1)
i , r

(2)
i , . . . , r

(M )
i }, the probability of its

true label yi being j given by the weighted voting can be estimated
as:

p(yi = j |xi ) =

∑
k ′ ∈Q v(k

′)∑M
k=1

v(k )
,Q = {k ′|r

(k ′)
i = j}. (4)

For the aggregated label ŷi , we define its confidence to be p(yi =
ŷi |xi ) calculated by Eq. (4). It follows that the confidence of the
aggregated labels is in the range of [1/J , 1]. To improve the accuracy
of the aggregated labels, we filter out those whose confidence is
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below a confidence threshold C ; and basically this threshold decides
the accuracy-coverage trade-off in the label aggregation component.

As more ground-truth labels are obtained from the strong oracle,

Ds and Dp can be utilized for more accurate estimation of weak

oracle reliability. In particular, for any (xi ,yi = j) in Ds ∪ Dp ,

we fix (xi , ŷi = j) in label aggregation, and set the confidence

p(yi = j |xi ) = 1. With such verified information, the estimate of

weak oracle reliability in Eq. (2) can be improved with the newly

acquired labels, which in turn leads to more accurate aggregated

labels in Dw , and therefore improves classifier training.

On the other hand, a common observation is that the reliability of

a weak oracle on a group of similar instances tends to be consistent,

but it might vary significantly over different groups. For example,

if building A is located in a similar region to a target building B

but with significantly different configurations of cooling fans, then

the weak oracle from building A may achieve 90% accuracy when

labeling the light sensors in building B, while might only be 10%

accurate in recognizing the fan speed sensors. Therefore, instead

of estimating the voting weight for each weak oracle as a whole in

Eq. (2), evaluating them on different clusters of sensors could bring

deeper insights and improved quality into label aggregation.

Based on the above considerations, we develop a new clustering-

based label aggregation method. The clustering Ω onD is initialized

by a Dirichlet Process DP(G0,α) described in [15], where G0 is a

base distribution, and α is a scaling parameter. After generating the

clusters, we perform label aggregation on each cluster separately

to estimate each weak oracle’s reliability. Specifically, we apply Eq.

(1), (2) and (3) to estimate every weak oracle Ok ’s accuracy w
(k )
c

and voting weight v
(k )
c in each cluster c .

However, as our initial clustering is performed only based on

the name features of sensors, rather than the ground-truth sensor

types, instances that are grouped together by clustering might

actually belong to different types. For example, two sensors with

similar names RM108C Zone Temp 3 and RM108C Zone Temp
3.STP are likely to be assigned into one cluster, but their types are
“temperature” and “temperature set point”, respectively. This would

hurt the quality of label aggregation: a weak oracle may have high

accuracy in recognizing the temperature sensors, but not the set

points; and therefore its high weight over temperature sensors in

the cluster will mislead the label aggregation for the setpoints in

this cluster.

The solution to this problem is to refine the clusters based on the

learnt classifier on the fly. If we observe that the learnt classifier

assigns multiple distinct labels in a cluster, it is a strong indicator

of finer boundaries inside the cluster; thus further sub-clustering

is needed. To this end, we measure the impurity of a cluster by its

class entropy calculated as:

H (c) = −
∑
y∈Yc

p(y) log(p(y)). (5)

Based on the prediction made by f (x), Yc is the set of unique labels
in cluster c , and p(y) is the proportion of label y in c . The average
class entropy of different clusters is computed as:

H =

∑
c ∈Ω H (c)

|Ω |
, (6)

where Ω is the set of all current clusters. We thus use this average

entropy measure to decide when to further divide the clusters dur-

ing the selective sampling process. Specifically, we use a threshold

r on the change of average class entropy: every time the average
class entropy increases by r times than the last time of clustering
update, sub-clustering will be performed in each cluster. In particu-

lar, k-means (k=|Yc |) will be used to generate sub-clusters in each
cluster c ∈ Ω.

3.3 Disagreement-based Query Selection

In our selective sampling process, the strategy for selecting the most

informative example to query the strong oracle is the key to quickly

improving the accuracy of the classifier. Built upon the strategy

that considers both the informativeness and representativeness of

an instance [22], we further consider the potential influence of a

selected instance x̂ on refining the aggregated labels in Dw . For

example, if three weak oracles label a timer as Humidity, Humidity,
Timer, respectively, without additional information, the label ag-
gregation component may incorrectly follow the majority and label

it as a humidity sensor, and thus assigns high confidence to the first

two oracles in the next round. Yet, if we obtain the ground-truth

label from the strong oracle and use it to correct the aggregated

label from weak oracles, the weak oracles can be re-evaluated and

in turn deliver more accurate aggregated labels subsequently.

To measure the informativeness of an instance and the influence

it brings to label aggregation, we propose a disagreement-based

selection strategy. Apart from the classifier f (x) trained on Ds ∪

Dp ∪Dw , another classifier fд(x) is trained on Ds ∪Dp . In this way,

we obtain a relatively “weaker” f (x) trained including information
from Dw and a “stronger” fд(x) trained purely on reliable labels.
If they disagree on an instance, the instance should potentially

be informative for improving the aggregated labels from weak

oracles (e.g., at least one of them is incorrect on this instance).

Specifically, in every iteration, by comparing the predictions by the

two classifiers, we first identify the candidate set Dc of instances

from Du such that f (x) and fд(x) give different labels to them, and
then compute a disagreement score d(xi ) for each instance xi ∈ Dc

using the Kullback-Leibler divergence [27] based on the predictions

by the two classifiers:

d(xi ) =

J∑
j=1

piд(j) log

(
piд(j)

pic (j)

)
+

J∑
j=1

pic (j) log

(
pic (j)

piд(j)

)
, (7)

where pic and p
i
д denote the predicted label distribution on xi by

the two classifiers f (x) and fд(x), respectively.
Another important factor in query selection is the representative-

ness of the selected instance. Considering that the names of sensors

of the same type in a building often share similar sub-strings; as

a result, they tend to be “neighbors” in the feature space. We thus

find the neighbors of an instance xi whose Euclidean distance to xi
in the feature space is smaller than a threshold, denoted by N (xi );
and then measure the representativeness of xi by the number of
xi ’s neighbors which have different labels predicted by f (x) and
fд(x), namely, |Dc ∩ N (xi )|. Consequently, we calculate the infor-
mativeness by combining the prediction disagreement score and
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Algorithm 1: Selective sampling with clustering-based label

aggregation.

Input: sensor points D = {x1,x2, ...,xN }, budget B,
confidence threshold C;

Output: predicted sensor types Y = {y1, ...,yN };
Initialization: 1) Generate initial clustering Ω with

DP(G0,α);
2) Query all instances in D toM weak oracles and obtain the

labels R = {r
(k )
i |i = 1, ...,N ;k = 1, ...,M};

3) Set Ds = {}, Dp = {}, Du = D, Dw = Aдд(R,Ds ∪Dp ,C,Ω),
iter = 0;
4) Train the classifier f (x) on Dw , and compute H = Hold

following Eq. (6);

while iter < B do
Select an instance x̂ = select(Du ) as described in Section

3.3;

Query O0 for the true label y for x̂ ;

Ds = Ds ∪ {x̂ ,y}, Du = D − Ds ;

Propagate y to the neighbors of x̂ and update Dp as

described in [22] ;

Update Dw = Aдд(R,Ds ∪ Dp ,C,Ω) as described in

Section 3.2 ;

Calculate the average class entropy H based on Eq. (6);

if H > r ∗ Hold then
Update clustering Ω by current predicted labels as

described in Section 3.2;

Hold = H ;

end

Train the classifier f (x) on Dtrn = Ds ∪ Dp ∪ Dw ;

iter = iter + 1 ;

end

the representativeness of each instance as:

score(xi ) = d(xi ) ∗ |Dc ∩ N (xi )| . (8)

Intuitively, following Eq. (8), instances with high disagreement

scores would imply possible errors in the prediction from either

f (x) or fд(x). Therefore, querying such instances provides an op-
portunity for the classifier or the label aggregation component to

correct their mistakes. For the classifier, this strategy discloses its

current prediction uncertainty and helps it to improve its estima-

tion. For the label aggregation component, this strategy can guide

it to realize the reliability of weak oracles and lead to improved

weak labels aggregation.

We shall note that most existing instance selection strategies,

such as selection by uncertainty [8], query by committee [17], only

consider the immediate effect of selected instance. In other words,

they select the next instance to query by estimating the improve-

ment of the classifier trained on Ds ∪ {x̂}, ignoring the change that
x̂ may bring to Dp or Dw . Noticing this, a prior study [22] proposes

an entropy-based selection strategy which first clusters the unla-

beled set and then locates the cluster ĉ with the highest product of
class entropy and cluster size, and finally selects the most “repre-

sentative” instance from the cluster by estimating the conditional

Table 2: Key statistics of the evaluation data set, including

the number of sensors, name feature dimension, and num-

ber of sensor types.

Building #Sensor #Name Feature #Sensor Type

A 661 1501 13

B 1753 284 17

C 1160 135 15

D 4007 492 15

E 3816 511 15

likelihood p(x |ĉ). By jointly considering the informativeness and
representativeness, this entropy-based method has the potential to

improve the label quality in Dp . Our disagreement-based selection

solution further extends the consideration to Dw ; in other words,

the potential improvement in reliability estimation of weak oracles.

This will best amplify the utility of every obtained ground-truth

label; and it is also empirically confirmed in our later evaluations.

Putting it all together: Algorithm 1 summarizes the entire proce-

dure of our proposed selective sampling framework for sensor type

classification. The input to our framework includes the point name

strings for instance feature construction, a fixed query budget B,
and the confidence threshold C . As the weak oracles are free, we
query all instances in D to all the weak oracles and obtain their

responses R. Aдд is the clustering-based label aggregation method
described in Section 3.2, which updates the estimate of weak ora-

cle’s reliability, and returns instances with aggregated labels whose

confidence scores exceed a threshold (but the instances in Ds or

Dp are not included). In each iteration, the most informative in-

stance x̂ is selected from Du , following the disagreement-based

selection strategy discussed above. Then the ground-truth label

y for instance x̂ obtained from the strong oracle is propagated

to the nearby instances in the feature space, following the label

propagation procedure in [22]. With the updated Ds and Dp , the

clustering-based label aggregation component is then applied to

re-evaluate the weak oracles and update the aggregated labels in

Dw . The classifier is re-trained on Dtrn = Ds ∪ Dp ∪ Dw . The

average class entropy is calculated across all the clusters, and once

it has increased by r times than the last time of clustering update,
we perform sub-clustering to generate finer clusters following the

steps in Section 3.2.

4 EVALUATION

In this section, to demonstrate the effectiveness of our proposed

solution, we conduct extensive evaluations based on the data from

a large collection of real-world buildings. First, we introduce the

dataset and our experiment setup. Then we compare our approach

against a suite of related baselines by measuring the accuracy of

type classification with a varying annotation budget. In particu-

lar, we investigate the effect of clustering-based label aggregation

and different query selection strategies on classifier training in a

target building, and the robustness of our solution under different

configurations of weak oracles.
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Table 3: Accuracy of weak oracles (1 through 6) on different target buildings (A through E).

Each oracle is a statistical classifier trained on a source building.

1 2 3 4 5 6

A 0.619 ± 0.392 0.435 ± 0.312 0.285 ± 0.412 0.577 ± 0.392 0.421 ± 0.447 0.299 ± 0.433

B 0.776 ± 0.324 0.356 ± 0.419 0.524 ± 0.381 0.861 ± 0.179 0.582 ± 0.468 0.613 ± 0.197

C 0.948 ± 0.198 0.547 ± 0.473 0.447 ± 0.488 0.917 ± 0.209 0.538 ± 0.483 0.766 ± 0.318

D 0.458 ± 0.246 0.707 ± 0.385 0.440 ± 0.335 0.602 ± 0.479 0.692 ± 0.378 0.506 ± 0.321

E 0.518 ± 0.329 0.583 ± 0.387 0.562 ± 0.390 0.239 ± 0.241 0.661 ± 0.316 0.502 ± 0.328

Table 4: Details of sensor types and corresponding number

in each building.

Sensor Type A B C D E

co2 16 52 0 7 24

air pressure 142 216 215 0 72

room temp∗ 159 231 207 238 252

operation status 59 58 41 90 135

setpoint 140 486 229 945 1360

airflow 14 172 9 233 223

hot water supply temp 27 1 1 1 1

hot water return temp 15 1 1 1 1

chilled water supply temp 18 6 10 2 3

chilled water return temp 15 4 9 2 3

supply air temp 20 17 3 3 3

return air temp 6 2 4 3 3

mixed air temp 5 2 3 0 0

occupancy 25 52 0 10 0

vavle position 0 290 10 234 0

power measurement 0 0 0 0 60

control command 0 138 403 2224 1662

fan speed 0 25 15 14 14
∗temp stands for temperature

4.1 Experiment Setup

Dataset.We evaluate our framework with sensor data from a col-

lection of real-world buildings, consisting of the point names and

one week’s time series readings of more than 11, 000 sensors of

18 different types from five office buildings. These buildings are

located across the US, commissioned by four different vendors with

different levels of automation, and were built in different times;

they reasonably represent the US office buildings. The length of

sensor names varies from 12 to 30, and the time series data is re-

ported every 5 ∼ 15 minutes, depending on the building. Table 2

summarizes the key statistics of the dataset, and Table 4 shows the

distribution of sensor types, more details about the dataset can be

found in [26].

To extract features from this data, we adopt k-mers [29] as the
name feature representation of point names, which are all the pos-

sible length-k substrings of a point name. In our experiments, the
length of k-mers is set to 3 and 4. We count the frequency of k-
mers in each point name as the feature value. In all five buildings,

data features of the time series readings of each sensor point are

44−dimensional statistical summary of 45-minute long sliding win-

dows over the primitive time series, including minimum, maximum,

median, variance, skew, etc3. The data features are only used for

generating weak oracles, as they better generalize across buildings

for type classification, according to the findings in [21].

Strong and Weak Oracles Setup. Our framework can take input

from non-expert annotators or already trained type classifiers as

weak oracles. As a proof-of-concept, in our experiments, we con-

struct classifiers that are trained using data features and labels from

existing labeled buildings and transfer them to a new building as

the weak oracles. For each target building, we create classifiers as

weak oracles using the data features of sensors in all the other

buildings (source buildings). Multiple types of classifiers are used to

simulate the situation where different weak oracles have different

reliability. In particular, we estimate random forest (RF), support

vector machines (SVM), and logistic regression (LR) on each source

building. In this way we obtain 3 × 4 weak oracles for each target

building, and we randomly select 6 of them to increase the difficulty

of selective sampling. Table 3 presents the overall ground-truth ac-

curacy and the standard deviation of the weak oracles on the target

buildings for sensor type prediction, which is not disclosed before-

hand to any algorithm to be evaluated. For strong oracle, as we

assume it is infallible, we directly return the ground-truth label of

the selected instance each time the strong oracle is queried.

For these five buildings, accuracy of the weak oracles varies from

28.5% to 94.8%; and even for the same classifier, its classification ac-

curacy varies across target buildings and different types of sensors.

This shows the need of accurate estimates of weak oracles’ reliabil-

ity, especially per type of sensors. We adopt logistic regression as

the classifier to be estimated for the target building.

4.2 Type Classification Results

To investigate the effectiveness of our framework in utilizing the

noisy labels for type classification, we compare our approach with

multiple baselines which use distinct ways to leverage the weak su-

pervision, i.e., the information from other buildings. To thoroughly

evaluate the performance, we compare the algorithms under a

varying query budget, i.e., how many ground-truth labels can be

obtained. The macro accuracy across all sensor types is used as the

evaluation metric.

First, we briefly introduce all the baseline methods and their

settings in the following:

3we refer interested readers to [21] for further detail.
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Figure 3: Type classification accuracy of our solution (SS) against various baselines on all five buildings.

• Clustering-based active learning with label propagation

(CPAL). This is a state-of-the-art active learning method for sen-

sor type classification [22]. Rather than leveraging noisy labels

from weak oracles, it propagates obtained ground-truth labels to

unlabeled instances as weak supervision.

• Transfer learning (TL). This is a state-of-the-art transfer learn-

ing solution for type classification [21]. It only leverages the weak

oracles for classifier training in the target building. To make it

comparable to other solutions, we follow [26] to integrate it with

CPAL: the aggregated labels from TL will be used to initialize the

classifier for active learning in the target building.

• Majority voting (MV). This is the most classical solution to

label aggregation: among the noisy labels gathered from weak

oracles for each instance, the most frequent label is selected. We

break ties arbitrarily. The same as in the TL baseline, we use the

aggregated noisy labels from MV to initialize the classifier in

CPAL for active learning.

• Dawid-Skene model (DS). This is a popularly used method for

crowd-sourcing: instead of only estimating the accuracy of weak

oracles, DS [9] estimates a confusion matrix for each weak oracle,

and the true labels are inferred by an Expectation Maximization

algorithm over the confusion matrices of weak oracles. Again,

we use its aggregated noisy labels to initialize the classifier in

CPAL for active learning.

Figure 3 reports on the comparison between our method (SS) and

all baselines across all five buildings. CPAL is the only method that

does not leverage weak oracles. In the early stage of model update,

there is only a small number of labels from the strong oracle, and

thus most of the methods that are augmented with labels from the

weak oracles have higher accuracy than CPAL. As more ground-

truth labels are acquired, CPAL quickly catches up with MV and DS.

The quality of aggregated labels in MV is limited by its untenable

assumption that all weak oracles can be equally treated. The DS

model, albeit effective in many truth discovery applications, does

not adapt well to the building sensor data — the key limitation is

that in building domain there are often many types of sensors, but

not enough labeled instances in each category. This fact leads the

confusion matrix in DS to be too sparse for an accurate estimation

of weak oracle reliability.

In most cases, although the weak oracles can benefit classifier

training in early stage, errors in the aggregated labels will still

degrade the performance significantly in the long term; and a high-

quality label aggregation component is thus needed. TL utilizes a

weighted ensemble method to aggregate transferred labels. For the

coverage-accuracy trade-off, here we set its consistency threshold

δ = 0.6 for its best performance [21]. In this setting, TL can collect
transferred labels for about 14% instances with accuracy higher than

95% on Building A, while SS can produce labels for 33% instances

with about 92% accuracy before querying the strong oracle by

setting its confidence thresholdC to 0.9. Although slightly lower in

accuracy, the improvement of SS in label quantity contributes more

to classifier training in the early stage. Furthermore, the accuracy

of the aggregated labels in SS can be improved with more rounds of

active querying. From Figure 3, SS almost always outperforms all

the baselines, achieving higher accuracy at a lower cost in querying.

We attribute its improvement to two key factors: the high-quality

label aggregation scheme, and the disagreement-based selection

strategy which takes the weak oracles into consideration.

Upon further inspection, SS is able to correctly identify most of

the examples in the major classes (e.g., room temp or setpoint in

Table 1), which suffice many control or monitoring applications. On

the other hand, misclassifications mainly occur in minor classes. For

instance, mixed air temperature sensors are rare in all the buildings

(only 5 examples in building A), and the weak oracles transferred

from other buildings also tend to make incorrect predictions for

these sensors with high confidence. In this case, the classifier is

likely to agree with the aggregated labels, though incorrect, which

reduces the possibility to query these sensors to the strong oracle

for correction.

To further investigate the label aggregation quality of SS with-

out any active querying, in Figure 4, we present the accuracy and

coverage of the aggregated labels before starting the process in

Algorithm 1, where the coverage of aggregated labels is calculated

as |Dw |/|D |. For brevity, we only show the results on Building B,

but the observations are similar on the other buildings. We notice

that when we increase the confidence threshold, we get aggregated

labels of better quality, i.e., higher accuracy, but the number of

labeled instances drops, i.e., lower coverage. With a proper C to

control the trade-off, SS can produce a considerable amount of

aggregated labels with encouraging high quality.

We also evaluate the quality of weak oracle accuracy estimation

to further verify that the label aggregation in SS benefits from the
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Figure 4: The initial coverage and accuracy of aggregated la-

bels with different confidence threshold C on Building B.

Figure 5: Root-mean-square error of weak oracle accuracy

estimation during the selective sampling process on differ-

ent buildings.

interactive query process. Specifically, we compare the estimated

weak oracle accuracy against the ground-truth under root-mean-

square error (RMSE) in Figure 5. In general, the estimated accuracy

for weak oracles are improved as more true labels are obtained

over iterations. This directly contributes to the improved quality of

classifier training in the target building, as shown in Figure 3.

4.3 Clustering-based Label Aggregation

To evaluate the effect of the clustering-based label aggregation in

our solution, we compare the performance of the learnt classifier

under different clustering settings:

• No clustering. In this case, no clustering is performed, and the

label aggregation component estimates the weak oracles’ accu-

racy globally, i.e., the weight of a weak oracle is the same across

all instances in the dataset. But the estimation of weak oracles’ ac-

curacy will be updated as more ground-truth labels are acquired

after each iteration.

• Initial clustering. The clusters are created and fixed before

the selective sampling starts. The weak oracle evaluation is per-

formed with respect to this initial cluster setting.

• Sub-clustering. After initializing the clusters, we enable them

to be further refined as described in Section 3.2. Empirically, we

set the sub-clustering threshold r = 2.

The performance of clustering settings above is reported in Fig-

ure 6. Under the same labeling cost, clustering does help the label

aggregation component to better integrate noisy labels. Compared

with the no-clustering setting, clustering delves deeper to investi-

gate the response patterns in groups of sensors which share similar

metadata.

To better illustrate the fact that the reliability of weak oracles

varies drastically across different clusters, Table 5 shows the ground-

truth accuracy of the weak oracles in different clusters on the

three buildings. For simplicity, we only present the results when 3

clusters are generated for all buildings. As shown in Table 5, the

accuracy of weak oracles in buildings varies significantly among

different clusters, especially in Building A. For example, on cluster

1 of building A, oracle 1, 4, 5 have the highest reliability, while on

cluster 2, their accuracy all drops to below 50%, but oracle 2 and

oracle 6 turn out to be more trustful. Similarly, in building E, weak

oracle 1 shows 82% accuracy on cluster 1, but only 16% on cluster 2.

Facing this challenge, only the clustering-based method can sum-

marize and derive a relatively consistent evaluation on the weak

oracles’ quality, thus achieving better performance. From Figure

6, the clustering-based method improves the learnt classifier ac-

curacy from 52% to over 60% before any manual label is obtained

on building A; and during the entire selective sampling process,

the clustering-based method always outperforms the no-clustering

one. On top of that, the sub-clustering method generates finer

clusters with higher purity, which further enhances classifier’s ac-

curacy. Sub-clustering especially benefits label aggregation when

initial clustering is misled by the original name features. For exam-

ple, in building E, many point names share the same prefix, such

as AP_M.RM-1839.ZN-T and AP_M.RM-1839.AHTG-STPT, which are
likely to be initially assigned into one cluster, but the performance

of weak oracles on these two groups are actually different. As sub-

clustering can further refine the clusters with more queries, the

two groups can be separated, and so the label aggregation accuracy

is improved.

The influence of sub-clustering is less significant on building B

and C compared to the case with initial clustering. This is because

the data features in building B and C are highly associated with

their sensor types, the initial clustering already has high purity and

the improvement of further clustering refining tends to be marginal.

4.4 Query Selection Strategy

To verify the effectiveness of our disagreement-based query selec-

tion strategy in reducing the labeling cost, we compare it with other

selection strategies under the same budget, i.e., number of strong

labels to obtain. We consider the following selection strategies:

• Random selection. In each iteration, randomly select an in-

stance from the unlabeled set to query.

• Cluster entropy-based selection. Hong et al. [22] propose the

cluster entropy based selection strategy, which jointly considers

the cluster entropy and the size of the cluster where the selected

instance belongs to.

• Confidence-based selection. This heuristic strategy always

selects the instance with the least confidence in the label aggre-

gation component.

• Disagreement-based selection.Our disagreement-based selec-

tion strategy described in Section 3.3.
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Table 5: Ground-truth cluster-level accuracy of weak oracles (1 through 6) in all buildings (A through E) when the number

of clusters is fixed to 3. In each cluster of a building, the highest accuracy among all weak oracles is marked in bold.

A B C D E

1 0.78, 0.43, 0.60 0.91, 0.63, 1.00 0.71, 1.00, 0.98 0.44, 0.35, 0.47 0.82, 0.16, 0.38

2 0.29, 0.91, 0.41 0.07, 0.52, 0.00 0.54, 1.00, 0.06 0.98, 0.99, 0.60 0.57, 0.47, 0.99

3 0.02, 0.66, 0.29 0.66, 0.46, 0.00 0.13, 1.00, 0.00 0.08, 0.33, 0.51 0.53, 0.47, 0.99

4 0.79, 0.43, 0.55 0.91, 0.79, 0.93 0.63, 1.00, 0.93 0.99, 1.0, 0.46 0.23, 0.25, 0.22

5 0.78, 0.00, 0.39 1.00, 0.24, 0.44 0.54, 1.00, 0.04 0.97, 0.99, 0.58 0.53, 0.72, 0.99

6 0.02, 0.92, 0.27 0.61, 0.65, 0.24 0.12, 0.99, 0.76 0.08, 0.33, 0.60 0.49, 0.41, 0.86

Figure 6: Comparison of classifier accuracy with different clustering strategies in our selective sampling solution.

Figure 7: Type classification accuracy of our selective sampling solution under different query selection strategies.

Figure 7 illustrates the classifier accuracy under different query

selection strategies. All the selection strategies can guide the clas-

sifier to reach accuracy over 80% quickly. Suffering from lack of

guidance, random sampling’s performance is unstable. Cluster en-

tropy based selection combines the current classifier’s prediction

and possible effect on the propagated labels. But it does not utilize

the confidence of aggregated labels, which indicates the contribu-

tion of an instance to label aggregation. As a result, its performance

is limited in this respect. Exactly on the opposite, confidence-based

selection strategy only considers the uncertainty in weak label

aggregation, but ignores the classifier’s prediction and the repre-

sentativeness of instances. It leads the selection to fully depend on

the noisy labels.

We also observe that the performance of query selection strate-

gies is often highly related to the properties of the dataset. Some

buildings (e.g., building B, C, and D) have multiple types domi-

nant in size and the name features of intra-cluster instances are

very similar, while the inter-cluster distances are relatively far-

ther. In these buildings, the name feature-based clusters can well

approximate the underlying type distribution. Consequently, the

drawback of confidence-based selection strategy can be easily over-

come after several queries cover each cluster. The cluster entropy

based selection strategy loses its advantage, because the clusters

are already of high purity. In other cases (e.g., building A) where

the instance name features are harder to distinguish, the perfor-

mance of cluster-entropy selection strategy is more efficient. Our

disagreement-based strategy improves its robustness in different

buildings by jointly considering the representativeness of instances

as well as the informativeness suggested by both the classifier and
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Figure 8: Accuracy and coverage of the labels in Dtrn and Dw with different selection strategies on building A.

Figure 9: Type classification accuracy of our selective sampling solution under different numbers of weak oracles.

the label aggregation component. In Figure 7, in most of the build-

ings, we observe substantial improvements for our disagreement-

based selection strategy, which outperforms the other baselines by

3% − 15%.

In order to further investigate the impact of the selection strate-

gies on classifier training and label aggregation, we compare the

accuracy and coverage on the actively created training set Dtrn

and the aggregated labels Dw during selective sampling. Due to

space limit, in Figure 8 we only present the results on building A

when C = 0.9. Figure 8(a) shows the accuracy and coverage of la-
bels on Dtrn , and Figure 8(b) shows the results on the “augmented”

instance set with aggregated weak labels Dw . With improved ac-

curacy from the learnt classifier, accuracy of the aggregated labels

in Dtrn becomes more and more important: Existing study [34]

shows that even a small number of erroneous labels may signif-

icantly degrade the performance of the classifier. From Figure 8,

compared to other strategies, although the coverage for Dtrn by

our disagreement-based strategy is slightly lower than the others,

it can always achieve much higher accuracy on both Dtrn and

Dw . Furthermore, if we zoom into Dw , the disagreement-based and

confidence-based selection strategies can actually provide more

reliable aggregated labels to complement the classifier training.

The main reason is that these two strategies take advantage of

uncertainty in weak label aggregation, while the update ofDw with

the selection strategy driven by uncertainty of the classifier (e.g.

entropy-based selection) is more likely to overlap with the update

in classifier prediction and label propagation.

4.5 Number of Weak Oracles

To evaluate the robustness of our selective sampling solution, we

vary the number of weak oracles, which makes it harder to infer

high-quality labels. Figure 9 presents the learnt classifier’s accuracy

under different numbers of weak oracles. We remove the weak

oracles one by one according to their ground-truth accuracy, i.e., the

best one first. In this way, it becomes more and more challenging for

the framework to provide useful aggregated labels. In the extreme

case where only one weak oracle is preserved, there is no need to

vote. The label aggregation component can only use the queried

ground-truth labels to evaluate the weak oracle in each cluster,

which leads to the worst initial performance of selective sampling

in all buildings. Fortunately, with several more oracles joining in,

the performance quickly improves and approaches the result when

all the weak oracles are available.

5 CONCLUSION
In this paper, we address the problem of building sensor type classi-

fication over disparate forms of sensor names. We build a selective

sampling framework upon a clustering-based label aggregation

method to exploit the abundant free yet noisy labels from multiple

information sources. The estimate of weak oracles’ reliability is

continuously updated as ground-truth labels are actively selected.

The query selection strategy simultaneously enhances both the

classifier and the component for noisy label aggregation, in order

to obtain better type labels. The proposed framework is evaluated

on a large collection of real-world building data with over 11, 000

sensors from five office buildings with different metadata naming
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conventions. The experimental results show that our framework

can significantly reduce the amount of manual labeling by syner-

gizing the classifier for predicting sensor types and the mechanism

for aggregating noisy labels from other information sources.

Our work particularly focuses on sensor type classification; as

more useful information can be identified from sensor names, such

as location and equipment id, it would be meaningful to extend our

solution to a richer scope of metadata mapping. When considering

more context, the importance of a sensor/actuator to certain appli-

cations could be included as part of the label from human and serve

as another factor of informativeness for deciding which instance

to query. As it evolves into a structured prediction problem, label

aggregation becomes more challenging, e.g., a weak oracle might be

good at recognizing different segments of point names. In addition,

although we assume weak oracles are free for labeling, in practice,

they might incur different costs based on their level of confidence

or according to the difficulty of annotation tasks. And in practice,

there might not exist any strong oracle which always provides per-

fect answers. It is thus important to extend our selective sampling

framework to such more general settings, where we not only need

to decide which instance to query, but also which oracle to query.

ACKNOWLEDGMENTS
We thank our shepherd and the reviewers for helpful comments.

This work was supported by NSF 1940291, 1718216, and Department

of Energy DE-EE0008227.

REFERENCES
[1] [n. d.]. Project Haystack. http://project-haystack.org/.
[2] Yuvraj Agarwal, Bharathan Balaji, Seemanta Dutta, Rajesh K Gupta, and Thomas

Weng. 2011. Duty-cycling buildings aggressively: The next frontier in HVAC
control. In IPSN. IEEE, 246–257.

[3] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, et al.
2016. Brick: Towards a unified metadata schema for buildings. In BuildSys.

[4] Bharathan Balaji, Chetan Verma, Balakrishnan Narayanaswamy, and Yuvraj
Agarwal. 2015. Zodiac: Organizing large deployment of sensors to create reusable
applications for buildings. In Proceedings of the 2nd BuildSys. ACM, 13–22.

[5] Bharathan Balaji, Jian Xu, Anthony Nwokafor, Rajesh Gupta, and Yuvraj Agarwal.
2013. Sentinel: occupancy based HVAC actuation using existing WiFi infrastruc-
ture within commercial buildings. In SenSys. ACM, 17.

[6] Vladimir Bazjanac and DB Crawley. 1999. Industry foundation classes and inter-
operable commercial software in support of design of energy-efficient buildings.
In Building SimulationâĂŹ99, Vol. 2. 661–667.

[7] Arka A Bhattacharya, Dezhi Hong, David Culler, Jorge Ortiz, Kamin Whitehouse,
and Eugene Wu. 2015. Automated metadata construction to support portable
building applications. In Proceedings of the 2nd BuildSys. ACM, 3–12.

[8] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. 1996. Active learning
with statistical models. Journal of artificial intelligence research 4 (1996), 129–145.

[9] Alexander Philip Dawid and Allan M Skene. 1979. Maximum likelihood esti-
mation of observer error-rates using the EM algorithm. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 28, 1 (1979), 20–28.

[10] U. DOE. 2013. Better buildings challenge. http://www4.eere.energy.gov/
challenge/sites/default/files/uploaded-files/may-recognition-fs-052013.pdf

[11] Pinar Donmez and Jaime G Carbonell. 2008. Proactive learning: cost-sensitive
active learning with multiple imperfect oracles. In CIKM. ACM, 619–628.

[12] Pinar Donmez, Jaime G Carbonell, and Jeff Schneider. 2009. Efficiently learning
the accuracy of labeling sources for selective sampling. In Proceedings of the 15th
ACM KDD. ACM, 259–268.

[13] Varick L Erickson, Stefan Achleitner, and Alberto E Cerpa. 2013. POEM: Power-
efficient occupancy-based energy management system. In IPSN. ACM, 203–216.

[14] Meng Fang, Jie Yin, and Dacheng Tao. 2014. Active learning for crowdsourcing
using knowledge transfer. In Twenty-Eighth AAAI. 1809–1815.

[15] Thomas S Ferguson. 1973. A Bayesian analysis of some nonparametric problems.
The annals of statistics (1973), 209–230.

[16] Romain Fontugne, Jorge Ortiz, Nicolas Tremblay, Pierre Borgnat, Patrick Flandrin,
Kensuke Fukuda, David Culler, and Hiroshi Esaki. 2013. Strip, bind, and search:
a method for identifying abnormal energy consumption in buildings. In IPSN.
IEEE, 129–140.

[17] Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. 1997. Selective
sampling using the query by committee algorithm. Machine learning 28, 2-3
(1997), 133–168.

[18] Jingkun Gao, Joern Ploennigs, and Mario Berges. 2015. A data-driven meta-data
inference framework for building automation systems. In Proceedings of the 2nd
ACM BuildSys. ACM, 23–32.

[19] Dezhi Hong, Quanquan Gu, and KaminWhitehouse. 2017. High-dimensional time
series clustering via cross-predictability. In Artificial Intelligence and Statistics.
642–651.

[20] Dezhi Hong, Jorge Ortiz, Kamin Whitehouse, and David Culler. 2013. Towards
automatic spatial verification of sensor placement in buildings. In BuildSys. ACM.

[21] Dezhi Hong, Hongning Wang, Jorge Ortiz, and Kamin Whitehouse. 2015. The
building adapter: Towards quickly applying building analytics at scale. In Pro-
ceedings of the 2nd ACM BuildSys. ACM, 123–132.

[22] Dezhi Hong, Hongning Wang, and Kamin Whitehouse. 2015. Clustering-based
active learning on sensor type classification in buildings. InCIKM. ACM, 363–372.

[23] Merthan Koc, Burcu Akinci, and Mario Bergés. 2014. Comparison of linear
correlation and a statistical dependency measure for inferring spatial relation of
temperature sensors in buildings. In BuildSys. ACM, 152–155.

[24] Jason Koh, Bharathan Balaji, Vahideh Akhlaghi, Yuvraj Agarwal, and Rajesh
Gupta. 2016. Quiver: Using control perturbations to increase the observability of
sensor data in smart buildings. arXiv preprint arXiv:1601.07260 (2016).

[25] Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh Gupta,
and Yuvraj Agarwal. 2018. Scrabble: transferrable semi-automated semantic
metadata normalization using intermediate representation. In BuildSys.

[26] Jason Koh, Dezhi Hong, Rajesh Gupta, Kamin Whitehouse, Hongning Wang, and
Yuvraj Agarwal. 2018. Plaster: An integration, benchmark, and development
framework for metadata normalization methods. In BuildSys. ACM, 1–10.

[27] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[28] Himabindu Lakkaraju, Jure Leskovec, Jon Kleinberg, and Sendhil Mullainathan.
2015. A bayesian framework for modeling human evaluations. In Proceedings of
the 2015 SDM. SIAM, 181–189.

[29] Christina S Leslie, Eleazar Eskin, Adiel Cohen, JasonWeston, andWilliam Stafford
Noble. 2004. Mismatch string kernels for discriminative protein classification.
Bioinformatics 20, 4 (2004), 467–476.

[30] Guoliang Li, Jiannan Wang, Yudian Zheng, and Michael J Franklin. 2016. Crowd-
sourced data management: A survey. IEEE TKDE 28, 9 (2016), 2296–2319.

[31] Hongwei Li and Bin Yu. 2014. Error rate bounds and iterative weighted majority
voting for crowdsourcing. arXiv preprint arXiv:1411.4086 (2014).

[32] Hongwei Li, Bo Zhao, and Ariel Fuxman. 2014. The wisdom of minority: Discov-
ering and targeting the right group of workers for crowdsourcing. In Proceedings
of the 23rd WWW. ACM, 165–176.

[33] Shuheng Li, Dezhi Hong, and Hongning Wang. 2020. Relation Inference among
Sensor Time Series in Smart Buildings with Metric Learning. (2020).

[34] David F Nettleton, Albert Orriols-Puig, and Albert Fornells. 2010. A study of
the effect of different types of noise on the precision of supervised learning
techniques. Artificial intelligence review 33, 4 (2010), 275–306.

[35] An Thanh Nguyen, Byron C Wallace, and Matthew Lease. 2015. Combining
crowd and expert labels using decision theoretic active learning. In Third AAAI
conference on human computation and crowdsourcing.

[36] U.S Department of Energy. 2019. Better Buildings Initiative Progress Report.
[37] Jorge Ortiz, Catherine Crawford, and Franck Le. 2019. DeviceMien: network

device behaviormodeling for identifying unknown IoT devices. In IoTDI. 106–117.
[38] Marco Pritoni, Arka A Bhattacharya, David Culler, and Mark Modera. 2015. Short

paper: A method for discovering functional relationships between air handling
units and variable-air-volume boxes from sensor data. In BuildSys. ACM, 133–136.

[39] Anika Schumann, Joern Ploennigs, and Bernard Gorman. 2014. Towards automat-
ing the deployment of energy saving approaches in buildings. In BuildSys.

[40] Jinhua Song, Hao Wang, Yang Gao, and Bo An. 2018. Active learning with
confidence-based answers for crowdsourcing labeling tasks. Knowledge-Based
Systems 159 (2018), 244–258.

[41] Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R Jennings. 2014.
Efficient crowdsourcing of unknown experts using bounded multi-armed bandits.
Artificial Intelligence 214 (2014), 89–111.

[42] Weimin Wang, Michael R Brambley, Woohyun Kim, Sriram Somasundaram, and
Andrew J Stevens. 2018. Automated point mapping for building control systems:
Recent advances and future research needs. Automation in Construction 85 (2018).

[43] Peter Welinder and Pietro Perona. 2010. Online crowdsourcing: rating annotators
and obtaining cost-effective labels. In 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition-Workshops. IEEE, 25–32.

[44] Yan Yan, Romer Rosales, Glenn Fung, and Jennifer G Dy. 2011. Active learning
from crowds.. In ICML, Vol. 11. 1161–1168.

[45] Jing Zhang, Victor S Sheng, Jian Wu, and Xindong Wu. 2015. Multi-class ground
truth inference in crowdsourcing with clustering. IEEE TKDE 28, 4 (2015).

[46] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. 2017.
Truth inference in crowdsourcing: Is the problem solved? Proceedings of the
VLDB Endowment 10, 5 (2017), 541–552.

252

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 01,2021 at 02:31:14 UTC from IEEE Xplore.  Restrictions apply. 


