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Abstract—Shortest path query is one of the most fundamental and classic problems in graph analytics, which returns the complete

shortest path between any two vertices. However, in many real-life scenarios, only critical vertices on the shortest path are desirable

and it is unnecessary to search for the complete path. This paper investigates the shortest path sketch by defining a top-k critical

vertices (kCV) query on the shortest path. Given a source vertex s and target vertex t in a graph, kCV query can return the top-k

significant vertices on the shortest path SP ðs; tÞ. The significance of the vertices can be predefined. The key strategy for seeking the

sketch is to apply off-line preprocessed distance oracle to accelerate on-line real-time queries. This allows us to omit unnecessary

vertices and obtain the most representative sketch of the shortest path directly. We further explore a series of methods and

optimizations to answer kCV query on both centralized and distributed platforms, using exact and approximate approaches,

respectively. We evaluate our methods in terms of time, space complexity and approximation quality. Experiments on large-scale

real-world networks validate that our algorithms are of high efficiency and accuracy.

Index Terms—kCV query, shortest path sketch, road network, social network, web graph

Ç

1 INTRODUCTION

RECENT researches have concentrated on statistical char-
acteristics of networked systems such as social net-

works [1], web graphs [2] and road networks [3], [4], [5], [6],
[7]. Among them, point-to-point shortest distance and path
queries are fundamental problems for numerous applica-
tions [8], [9], [10], [11], [12]. However, traditional solutions
such as Dijkstra algorithm [13] cannot be widely applied
due to its inefficiency on sizable graphs. Hence, various
approaches have been proposed to efficiently solve shortest
path problem in big graphs [14], [15], [16], [17]. State-of-the-
art shortest path algorithms [18], [19], [20] mainly aim to
find the whole path, whereas at most time, people are only
interested in several crucial parts (e.g., a few key vertices)
on the shortest path. For example, most travelers only care
about trade centers or transportation hubs in their routes.
Based on this phenomenon, researchers start to focus on
the algorithms of shortest path sketch. A recent one is
k-skip [21] query, which returns P �, a subset of the vertices

on the shortest path P . P � contains at least one vertex from
every k consecutive vertices in P .

This paper studies another variant of the shortest path
sketch. We propose a top-k critical vertices (kCV) query on
the shortest path between a given pair of vertices, which can
return the top-k significant vertices on the shortest path.
The significance of each vertex can be determined by several
factors, andwewill introduce them in detail later. kCV query
can benefit people in many ways. For instance, on road net-
works, kCV query can help the travelers to identify the short-
est path in a fast way, because in most cases the travelers
already have a previous knowledge of the most important
vertices on the shortest path, which are often thewell-known
places. Besides, sometimes when two friends need to meet
each other in some landmarks, kCV query is a good way for
them to find a list of popular places on their shortest path to
meet, for example, a big shopping mall. On social networks,
those people with lots of followers can be regarded as high-
significance vertices. Users are interested in the social stars
and celebrities on their chains of connection.We denote the k
critical vertices returned by kCV query as kCV objects.

Fig. 1 illustrates an example of a 3CV query with source
vertex s and target vertex t on their shortest path SP ðs; tÞ.
Suppose the upper vertices are more significant, the query
returns critical vertices v1; v2; v3 successively.

In this paper, we study on different methods to answer
kCV query on centralized and distributed platforms respec-
tively and implement them with high efficiency. Vertices
should be ordered according to the definition of significance.
Intuitively, significance describes the importance of each
vertex and can be defined by various criteria. For example,
the degree or betweenness centrality of vertices could be a
good indicator for vertex significance.

In order to answer kCV query, we adapt label-based
strategy [22][23] for the preprocessing. These are feasible
labeling algorithm based on distance oracle. Distance oracle

� J. Ma is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200000, China, the State Key
Laboratory of Software Development Environment, Beihang University,
Beijing 100083, China, and the Guizhou Provincial Key Laboratory of
Public Big Data, Guizhou University, Guiyang, China.
E-mail: heather@sjtu.edu.cn.

� B. Yao is with the Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200000, China, and the Beijing
Key Laboratory of Big Data Management and Analysis Methods, Renmin
University of China, Beijing 100872, China. E-mail: yaobin@cs.sjtu.edu.cn.

� X. Gao, Y. Shen, and M. Guo are with the Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai
200000, China. E-mail: {gao-xf, shen-yy, guo-my}@cs.sjtu.edu.cn.

Manuscript received 10 Mar. 2017; revised 10 Dec. 2017; accepted 6 Feb.
2018. Date of publication 22 Feb. 2018; date of current version 10 Sept. 2018.
(Corresponding author: Bin Yao.)
Recommended for acceptance by J.-R. Wen.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2018.2808495

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 10, OCTOBER 2018 1999

1041-4347� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 01,2021 at 02:32:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9859-784X
https://orcid.org/0000-0002-9859-784X
https://orcid.org/0000-0002-9859-784X
https://orcid.org/0000-0002-9859-784X
https://orcid.org/0000-0002-9859-784X
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
https://orcid.org/0000-0003-1776-8799
mailto:
mailto:
mailto:


is an auxiliary data structure generated in preprocessing
in order to accelerate distance queries between any pairs
of vertices. A practical distance oracle is constructed with
affordable time and space cost, and it is supposed to answer
the distance query with high accuracy in constant time. If
taking vertex order into consideration, distance oracle could
be utilized to answer kCV query by storing the highest
significance vertex on the shortest path of every pair, which
is the fundamental idea of our basic method to answer kCV
query.

In most cases, for a distance oracle, more efficient query
requires longer preprocessing time, and higher accuracy
results need more time and space consumption. By different
ways of constructing the distance oracle, the trade-off
between accuracy and cost in time and space, and the trade-
off between time consumption in preprocessing and query
could be both adjusted.

The above basic method has some unnecessary overhead
in the query (see details in Section 4.3.2), and hence we pro-
pose an optimization to improve the efficiency by modifying
the way of distance oracle construction. With this optimiza-
tion, we can save the query time by reducing some extra
operations, and this acceleration of query is clearly observed
in the experiments on real networks. But on the other hand,
it costs higher time and space consumption in preprocessing.

To achieve better performance, we propose two parallel
approaches to kCV query. The first method utilizes multi-
threading technique for parallel acceleration. With a slight
loss of optimality, the multi-threading method can improve
the efficiency dramatically with the increment of the num-
ber of threads. Second, we leverage specialized distributed
processing systems [24], [25], [26], [27], [28] for acceleration,
in which delicate designs are provided to fully utilize
the features of the distributed framework. In order to better
utilize the capability of distributed processing, we also
explore and implement top-k batch query (kBCV query) dis-
tributively, which can afford a large number of approximate
kCV queries on all pairs in a set of vertices, applying reverse
labeling and pruning methods.

In all, the main contributions of our work can be summa-
rized as follows:

� We propose kCV query and explore a series of rele-
vant techniques to solve it. This is the first study
about kCV query to the best of our knowledge.

� We explore a basic method to answer kCV query and
implement it on centralized platform, which com-
putes the score of the vertex significance, sorts and
outputs the kCV objects on shortest path with time
complexity OðdkjLjÞ, where d stands for the average
degree of vertices in the graph.

� We propose pure-labeling method, which also
returns exact kCV objects and performs faster than
basic method by a constant factor d, reduces time
complexity of query from OðdkjLjÞ to OðkjLjÞ, but
requires longer preprocessing time.

� We design a parallel method with multi-threading
technique. Compared with the above methods
returning exact answers, multi-threading method is
much more efficient but incurs a little sacrifice of
accuracy (but also acceptable). The speedup can
reach k=log ðakÞ, where a is a parameter which deter-
mines the tradeoff between time and accuracy.

� We explore kBCV query, which can support quanti-
ties of kCV queries on every pair of vertices in a set
distributively. By adopting distributed computing,
experimental results show that the algorithm is of
good efficiency.

The rest of this paper is organized as follows. Section 2
shows some related work. Section 3 gives several definitions
mentioned in this paper. Section 4 studies techniques for
kCV query on centralized platform, while Section 5 introdu-
ces kBCV query on distributed platform. Section 6 presents
our experimental evaluations. We make a conclusion in
Section 7.

2 RELATED WORK

2.1 Dijkstra and Bi-Directional Dijkstra

Dijkstra. Dijkstra [13] is a classical algorithm to solve shortest
path problem,which can be applied to graphswith non-nega-
tive edges. Given an input directed graphG ¼ ðV;EÞ, in order
to find SPðs; tÞ, the algorithm starts at the source vertex s, tra-
verses other connected vertices in ascending order of distance.
Dijkstra keeps a priority queue to get the minimal distance
from s to all unselected vertices and uses a set S to store the
vertices which have been selected. Initially, both S and the
priority queue are empty. In every iteration, choose the unse-
lected vertex v 2 V nS with minimal distance dðs; vÞ from the
priority queue, add v into S, and store dðs; vÞ as the shortest
distance between s and v. For each neighbor w of v, update
the distance dðs;wÞ ¼ minfdðs;wÞ; dðs; vÞ þ lðv;wÞg. When
the target vertex t is visited, SPðs; tÞ has been found. The
asymptotic time consumption of Dijkstra is Oðmþ n logmÞ,
where n is the number of nodes, and m is the number of
edges.

Bi-Directional Dijkstra [29]. For query ðs; tÞ, in bi-directional
Dijkstra, a forward search from s and a reverse search from t
will start simultaneously. Both of them are Dijkstra searches
but in opposite directions. Vertices are visited in ascending
order of rs;tðvÞ ¼ minfdðs; vÞ; dðv; tÞg. With these two
searches, bi-directional Dijkstra is much more efficient than
the traditional Dijkstra. Many state-of-the-art shortest path
algorithms [30], [31] are based on bi-directional Dijkstra.

2.2 Contraction Hierarchies

Contraction hierarchies (CH) [30] is a preprocessing-based
shortest path algorithm which exploits hierarchical index.
In preprocessing, CH calculates distances between some pair-
wise vertices, then uses the results to accelerate the query.
Concretely, CH contracts the vertices in bottom-up order and
adds shortcuts to ensure the correctness of shortest distance

Fig. 1. 3CV query on SP(s,t).
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computation in the remained graph. The remained graphs in
each iteration are denoted byG1;G2; . . . ;Gn. Suppose v is the
next vertex to be contracted inGi, and u is an incoming neigh-
bor of v (u 2 NinðvÞ, whereNinðvÞ is the set of all the incoming
neighbors of v), w is an outgoing neighbor of v (w 2 NoutðvÞ),
for each u 2 NinðvÞ and w 2 NoutðvÞ, CH computes dðu;wÞ
after v is removed, and compares it with lðu; vÞ þ lðv;wÞ,
where lðu; vÞ and lðv;wÞ denote the lengths of the edges u ! v
and v ! w. If lðu; vÞ þ lðv;wÞ < dðu;wÞ, SPðu;wÞ must pass
v, then a shortcut u ! w should be inserted into Giþ1, whose
length is lðu; vÞ þ lðv;wÞ. With shortcuts, dðu;wÞ calculated in
Giþ1 cannot be influenced by the removal of v. Vertices are
sorted by the order of contraction, i.e., the rank of v, rðvÞ ¼ i
iff v is contracted in the ith iteration. Then CH gets a total
order of all vertices, where rðuÞ > rðvÞ means u has higher
rank than v. After preprocessing, the original graph G with
shortcuts inserted turns into a new graph, denoted by G�. In
G�, for any pair ðs; tÞ, if all vertices on SPðs; tÞ (except s and t)
have lower rank than s and t, i.e., if for all v 2 V ðSPðs; tÞÞ,
rðvÞ < rðsÞ and rðvÞ < rðtÞ, then there must exist a shortcut
s ! twith length dðs; tÞ.

Bi-directional Dijkstra finds SP ðs; tÞ by running searches
from both s and t in contrary directions with CH pruning in
G�. Take the forward search from s as an example, only the
edges ðu; vÞwith rðuÞ < rðvÞwill be visited.

The efficiency of CH is mainly determined by the total
order. In practice, CH is a fast algorithm in most cases, but in
theworst case, the complexity can reach up toOðn2 lognÞ.

2.3 Labeling

Labeling method is a branch of distance oracle, studied in
[23], [32], [33], [34]. 2-hop labeling [23] attempts to find a
subset of vertices with the best connectivity in the graph.
Each vertex u has a label LðuÞ, which is regarded as a sim-
plification of shortest distance computation. For directed
graphs, LðuÞ includes the forward label LfðuÞ and reverse
label LrðuÞ. LfðuÞ contains the information about the outgo-
ing shortest paths from u and LrðuÞ contains the information
about the incoming shortest paths to u. Based on 2-hop
labeling, any reachability, shortest path or distance query
ðs; tÞ can be answered by just taking LfðsÞ and LrðtÞ.

Hub label algorithm (HL) [22] is a practical implementa-
tion of the labeling strategy. In HL, both LfðuÞ and LrðuÞ
consist of an array. Take LfðuÞ as an example, elements of
the array are pairs like ðv; dðu; vÞÞ, where vertex v is called a
hub. A pair ðu; vÞ is covered by hub w iff w is on one of the
shortest paths between u and v. Labels obey cover property:
for any two vertices s and t, there is at least one vertex w on
SP ðs; tÞ in both LfðuÞ and LrðuÞ.

Hierarchical hub labeling (HHL) [35], [36], [37] can be
considered as HL with hierarchies of vertices. Hierarchical
labeling satisfies following conditions:

(1) For any path P ðu; vÞ, there exists a sole highest-rank
vertex w on it.

(2) For any pair ðu; vÞ, the vertex with the highest rank
on SP ðu; vÞ is in both LfðvÞ and LrðuÞ.

Thus, on a shortest path SP ðs; tÞ, the vertex with the
highest rank can be found out in LfðsÞ \ LrðtÞ. Taking
advantage of this feature, we adopt labeling strategy in the
preprocessing.

3 PROBLEM DEFINITION

A real world network can be considered as a directed
weighted graph G ¼ ðV;EÞ, where V ¼ V ðGÞ is the set of all
the nodes, and E ¼ EðGÞ is the set of all the edges. There is
a weight function E ! Rþ to map each edge to its weight.
We use n ¼ jV j to denote the number of vertices and
m ¼ jEj to denote the number of edges. The weight of edge
e is denoted as lðeÞ.

For any s; t 2 V , our sketch of SP ðs; tÞ, which is denoted
as SP �ðs; tÞ, consists of the top-k critical vertices in SP ðs; tÞ,
where k is a user-defined integer.

Definition 1 (Significance). Every vertex v in G has a signifi-
cance. Significance of v, denoted as sgðvÞ, can be regarded as
the importance of v. Without loss of generality, we assume that
for any u; v 2 V , sgðuÞ 6¼ sgðvÞ. If sgðsÞ > sgðtÞ, significance
of s is higher than t, which means s is more significant than t.

Definition 2 (Top function). TopðSÞ stands for the highest-
significance vertex in S, where S is a set of vertices.

TopðSÞ ¼ argmax
vx2S

sgðvxÞ (1)

Similarly, for a path P , TopðP Þ means the highest-significance
vertex on P .

For a path P ðu; vÞ, also denoted as Puv, we define Top�ðPuvÞ
as the highest-significance non-endpoint vertex onPuv:

Top�ðPuvÞ ¼ argmax
vx2V ðPuvÞ^vx 6¼u;v

sgðvxÞ (2)

Definition 3 (kCV query). The input of top-k critical vertices
(kCV) query is a quadruple ðG; s; t; kÞ, where k is the user-
defined number of required critical vertices ðk > 0Þ. The result
is an array ððv1; dðs; v1ÞÞ; ðv2; dðs; v2ÞÞ; . . . ; ðvk; dðs; vkÞÞÞ.
These kCV objects make up SP �ðs; tÞ ¼ vp1 ! � � � ! vpk ,
where p1 � pk are the orders of kCV objects sorted by their actual
positions on SP ðs; tÞ. If jV ðSP Þj � k, then SP � is exactly the
complete shortest path, in this case SP �ðs; tÞ ¼ SP ðs; tÞ. We
mark the kCV objects as ktopðs; tÞ ¼ fv1; . . . ; vkg, where
sgðv1Þ > sgðv2Þ > � � � > sgðvkÞ.
Our problem can be described straightforward: returning

the top-k highest-significance vertices on the shortest path
between the given pair.

In Table 1, we present all the symbols used in this paper.
The idea of significance is related to hierarchical strategy.

CH [30] is an example which adopts hierarchical index. For
a CH shortest path query ðs; tÞ, a bi-directional search runs
from s and t with shortcuts, which is bottom-up, i.e., the
search visits vertices from lower to higher significance
on SP ðs; tÞ in G�. However, our goal is contrary to CH.
We need a top-down search to quickly get the top vertices
on shortest paths. For simplicity of description, in following
sections we assume that the shortest path is unique, but we
can also handle the case of multiple shortest paths, which
will be discussed in Section 4.3.3.

4 CENTRALIZED SOLUTIONS TO KCV QUERY

4.1 Overview

On centralized platform, we propose three algorithms for
kCV query, consisting of both exact and approximate
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methods. Exact solutions include the basic and the pure-
labeling methods. To further improve the query efficiency,
we explore an approximate approach with multi-threading
technique, which can also achieve high accuracy and dra-
matically enhance the efficiency. All these three methods
follow similar intuitions: relying on the preprocessed dis-
tance oracle, SP ðs; tÞ is split into subpaths progressively,
and we add the critical vertices found on the subpaths into
ktopðs; tÞ in top-down order. We will give the proof for the
correctness of our algorithms.

4.2 Basic Method

4.2.1 Preprocessing

We adopt hierarchical hub labeling [35] for the preprocess-
ing to accelerate kCV query. The preprocessing consists of
two parts: vertex ranking and label construction. We rank
vertices with some predefined measure criteria of signifi-
cance to obtain a total order of all v 2 V , then we construct
hierarchical labels for each vertex, including the forward
label LfðvÞ and reverse label LrðvÞ, ensuring that for any
pair ðs; tÞ, TopðSP ðs; tÞÞ is in both LfðsÞ and LrðtÞ. The
online query is based on this offline preprocessing.

Vertex Ranking. In researches on the topology of networks,
measuring the significance of vertices is fundamental. For
kCV query, ranking vertices by their significance is quite
essential for our subsequent algorithms because kCV query
focuses on the significance of vertices, i.e., our query is
order-sensitive. Denote the rank of vertex v as rðvÞ, where
(rðvÞ 2 f0; 1; . . . ; n� 1g). A vertex u is the lowest-significance
vertex iff rðuÞ ¼ 0.

We list some typical criteria for vertex ranking on
networks as follow:

(1) Degree: the degree (including in-degree and out-
degree) of v is the number of edges incident to v. Ver-
tices with higher degree tend to be more significant
in most cases.

(2) Betweenness centrality (betweenness): this is a com-
mon and representative standard to measure the
significance of vertices, applied widely in networks.
Betweenness centrality of vertex v can be computed
by this expression:

betweennessðvÞ ¼
X

s 6¼v 6¼t

sstðvÞ
sst

(3)

where sst is the number of the shortest paths from
vertex s to vertex t, sstðvÞ is the number of the short-
est paths from s to twhich pass v.

(3) Stress centrality: the number of the shortest paths
that pass through the vertex.

stressðvÞ ¼
X

s 6¼v 6¼t

sstðvÞ (4)

If we keep a shortest path tree SPT ðvÞ for every
v 2 V (if the shortest paths are not unique, keep a
DAG), and denote the set of the descendants of w
(including w) in SPT ðvÞ as descendantsðw; SPT ðvÞÞ,
then stressðwÞ can be estimated by:

stressðwÞ �
X

v2V
jdescendantsðw; SPT ðvÞÞj (5)

In label-based algorithms, the ranking criterion is a main
factor to determine the label size. Consequently, it has a
marked impact on query efficiency and space consumption.
The ranking criterion we apply should: 1) evaluate the verti-
ces in a reasonable and meaningful way, i.e., the criterion
cannot be set randomly or aimlessly, instead, it must reflect
realistic meanings for the users; 2) try to improve the label
quality and reduce the time and space consumption in
query. Fortunately, researches [30], [36], [38] have shown
that the two requirements have common ground and com-
parability in practice. Although finding a rank for optimal
HHL is an NP-complete problem [39], there are some poly-
nomial-time approximation algorithms [35], [36] for small-
est labeling. In our implementation, we adopt the ranking
methods in [30], [36], first use the preprocessing of CH to
contract the low-significance vertices and reduce the size of
G to get a much smaller remained graph G0 containing only
the top-L vertices, then reorder these vertices with selected
criteria. Finally, combine the reordered top-L vertices and
the rest ones to get the total order.

Label Construction. With a given total order, labels should
be generated for each vertex. A naive method is running
Dijkstra from every vertex u and putting ðu; dðu; vÞÞ into
LðvÞ for each v 2 SPT ðuÞ. A much more efficient way is
pruning labeling (PL) [38], which is similar to Dijsktra, but
can efficiently establish hierarchical labels with pruning.
The main idea is: the initial labels are all empty; process
vertices in top-down order (from the highest to the lowest
significance); in every iteration, add a vertex into relevant
labels. Specifically, when vertex u is processed, run two
pruned Dijkstra:

TABLE 1
Symbols

Variable & Function Description

G Input graph
V ð�Þ The set of vertices on a path or graph
Eð�Þ The set of edges on a path or graph
n The number of nodes in G
m The number of edges in G
lð�Þ Weight of edge
Ninð�Þ The incoming neighbors of a vertex
Noutð�Þ The outgoing neighbors of a vertex
sgð�Þ Significance of vertex
SP ð�Þ Shortest path
k The number of user-defined required

critical vertices
ktopð�Þ The kCV objects on the shortest path
SP �ð�Þ The sketch of the shortest path
Topð�Þ The highest significance vertex

in a set or a path
Top�ð�Þ The highest significance non-endpoint vertex

on a path
hopð�Þ The number of hops on a path
Lf ð�Þ Forward label of a vertex
Lrð�Þ Reverse label of a vertex
SPT ð�Þ Shortest path tree rooted at a vertex
cð�Þ The function which returns the top vertex

on a shortest path
c0ð�Þ The function which returns the top vertex

(not endpoint) on a shortest path
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(1) Start at vertex u, run forward Dijkstra (only visiting
outgoing edges), then for every vertex v visited by
the search, run HL query on current partial labels to
compute an estimated value dhðu; vÞ for dðu; vÞ. If
dhðu; vÞ � dðu; vÞ, that means ðu; vÞ has been covered
by previous hubs, thus the search can be pruned by
ignoring v and v’s descendants. Otherwise, insert
ðu; dðu; vÞÞ into LrðvÞ and continue the search.

(2) Same as above, but in the opposite direction.
Run reverse search (only visiting incoming edges) to
construct forward labels.

After applying this algorithm on every vertex, hierarchi-
cal labels have been constructed in a top-down way.

4.2.2 Query

We first introduce several utility methods which help
design the basic method, then we present the whole process
and analyze the characteristics of this algorithm.

cc Operation. For any pair ðu; vÞ, we traverse LfðuÞ \ LrðvÞ
and find a subset V 0, where each vi 2 V 0 can minimize
dðu; viÞ þ dðvi; vÞ. Notice that TopðV 0Þ ¼ TopðSP ðu; vÞÞ, we
select vx ¼ TopðV 0Þ and denote this operation as:

cðu; vÞ ¼ Topðfvi 2 LfðuÞ
\ LrðvÞj argmin

vi

ðdðu; viÞ þ dðvi; vÞÞgÞ (6)

Operation cðu; vÞ can be considered as a function which
can return TopðSP ðu; vÞÞ.

Assistant Query. Assistant query aims to find the neigh-
bors of a vertex vx on the shortest path which passes
through vx. To achieve it, we can exploit any distance oracle
which supports high-efficiency shortest distance query.
Nrðvx; uÞ is defined as the set of all incoming neighbors of vx
on SP ðu; vxÞ. By symmetry, Nfðvx; vÞ is the set of all
outgoing neighbors of vx on SP ðvx; vÞ. Take SP ðu; vxÞ as an
example, for every incoming neighbor vm of vx, we use
an efficient sub query on pair ðu; vmÞ to find dðu; vmÞ. If
dðu; vmÞ þ lðvm; vxÞ ¼ dðu; vxÞ, it means that vm 2 Nrðvx; uÞ.
vn 2 Nfðvx; vÞ is obtained in a similar way. Since HHL query
[35] is an efficient way to get the shortest distance, we can
adopt it in the assistant query method.

Some relevant definitions are listed as follows:

Definition 4 (Strict partition). Suppose path P is split into
subpaths P1; P2; . . . ; Px, if V ðP Þ ¼ V ðP1Þ [ V ðP2Þ [ � � � [
V ðPxÞ, and for any 1 � i 6¼ j � x, EðPiÞ \ EðPjÞ ¼ ;, then P
is strictly partitioned by these subpaths. For vertex pairs, ðs; tÞ
is strictly partitioned by ðs1; t1Þ; ðs2; t2Þ; . . . ; ðsx; txÞ iff there
exist shortest paths P ðs; tÞ; P ðsi; tiÞ; i ¼ 1; . . . ; x, where P ðs; tÞ
is strictly partitioned byP ðs1; t1Þ; P ðs2; t2Þ; . . . ; P ðsx; txÞ.
The pseudo code of the basicmethod is presented inAlgo-

rithm 1. The query method is a divide-and-conquer process.
SP ðs; tÞ is split into many subpaths progressively. The algo-
rithm starts with an empty array ktop ¼ ; (line 1), cðs; tÞ
returns the 1st candidate vertex (line 2). We use a priority
queue to store the candidate vertices, where the elements in
the queue are served according to their significance (from
higher to lower). In the ith iteration, the priority queue pops
out the highest-significance unselected candidate vertex x,
we select x as the ith CV object (lines 4-5). Then, the subpath

ðu; vÞ which passes through x is split into two ones by x
(lines 6-8). Obviously x is the top vertex on both P ðu; xÞ and
P ðx; vÞ, thus c operations are meaningless on these two sub-
paths. Instead, we use assistant queries to find the neighbors
m 2 Nrðx; uÞ (lines 9-16) and n 2 Nfðx; vÞ (lines 17-24). If the
shortest paths are not unique, we break ties in favor of the
higher-significance vertices. After that, P ðu; vÞ is split into
P ðu;mÞ and P ðn; vÞ (line 25). In a nutshell, the new subpaths
which are split by last selected CV object are denoted as the
active subpaths (Initially, SP ðs; tÞ is regarded as an active
path). We do c operations on the active subpaths and add
the top vertices on them into the priority queue as new candi-
date vertices (lines 13-14, 21-22). The algorithm runs itera-
tively and terminates when it returns all the kCV objects.

Algorithm 1. Basic Method of kCV Query

1: ktop ¼ ;
2: queue.push(cðs; tÞ)
3: while jktopj < k and !queue.isEmpty do
4: x=queue.pop()
5: ktop.push(x)
6: Subpath sp ¼ x.getsubpath()
7: Vertex u ¼ sp.getStart()
8: Vertex v ¼ sp.getEnd()
9: Distance dux ¼ findDistanceðu; xÞ
10: form 2 NinðxÞ do
11: Distance dum ¼ findDistanceðu;mÞ
12: if ðdum þ lðm;xÞ ¼ duxÞ then
13: Vertex topum ¼ cðu;mÞ
14: queue.push(topum)
15: end if
16: end for
17: Distance dxv ¼ findDistanceðx; vÞ
18: for n 2 NoutðxÞ do
19: Distance dnv ¼ findDistanceðn; vÞ
20: if ðdnv þ lðx; nÞ ¼ dxvÞ then
21: Vertex topnv ¼ cðn; vÞ
22: queue.push(topnv)
23: end if
24: end for
25: splitPathðsp;m; nÞ
26: end while

Fig. 2 shows an example of the basic method to answer
a 3CV query ðvs; vtÞ. c operation on SPðvs; vtÞ returns the 1st
CV object v3 (in full-line red circle). With assistant queries, we
find v2 2 Nrðv3; vsÞ and v4 2 Nfðv3; vtÞ, then split SPðvs; vtÞ

Fig. 2. An example of the basic method.
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into two active subpaths SPðvs; v2Þ and SPðv4; vtÞ. In the 2nd
iteration, candidate vertices v1 and v5 (in dotted-line red
circles) are found and stored into the priority queue. The
queue pops out v1 as the 2nd CV object. The process stops
when the 3CV objects v3; v1; v5 are all returned.

4.2.3 Analysis on Basic Method

Denote the set of all the shortest paths between ðs; tÞ as
ASP ðs; tÞ. We have following analysis on the basic method:

Lemma 1. With labels established in the way introduced in Sec-
tion 4.2.1, the vertex returned from operation c is the highest-
significance vertex on all shortest paths of the given pair.

Proof. As introduced in Section 4.2.1, we construct labels in
top-down order, therefore, the higher-significance verti-
ces are put into the labels earlier and cannot be pruned
later, thus the top vertex on all shortest paths in ASP ðs; tÞ
must be in both LfðsÞ and LrðtÞ. tu
We can imply Theorem 1 from Lemma 1:

Theorem 1 (Correctness of Basic Method). The answer of
the basic method for kCV query ðs; tÞ is exactly the kCV objects
on SPiðs; tÞ 2 ASP ðs; tÞ, where SPiðs; tÞ is the shortest path
which breaks ties in favor of the higher-significance vertices.

Proof. If the shortest path SPðs; tÞ is unique, considering that
we retrieve the kCV objects in top-down order, the top k
selected vertices are exactly the kCV objects. If the shortest
paths are not unique, suppose in the gth iteration, the top
g� 1 CV objects v1; v2; . . . ; vg�1 have been selected, and all
current subpaths are P ðs1; t1Þ; P ðs2; t2Þ; . . . ; P ðsx; txÞ (the
subpaths may not be unique), notice that ðs; tÞ is strictly
partitioned by the top g� 1 CV objects (consider them as
g� 1 pairs of the same vertex) and the pairs ðs1; t1Þ;
ðs2; t2Þ; . . . ; ðsx; txÞ, thus the gth CV object must be on one of
the subpaths. Denote the set of all current candidate verti-
ces as cddðs; tÞ. Suppose ci ¼ cðsi; tiÞ, notice that
cddðs; tÞ ¼ fciji ¼ 1; . . . ; xg. By Lemma 1, ci is the highest-
significance vertex on all SPjðsi; tiÞ 2 ASP ðsi; tiÞ. There-
fore, vg ¼ Topðfc1; c2; . . . ; cxgÞ has higher significance than
any vertices which will be selected as critical vertices after
vg, i.e., vg is exactly the gth CV object. In this way we can
break ties in favor of the higher-significance vertices, and
the vertices returned by Algorithm 1 are the exact kCV
objects. tu
Complexity. In the basic method, k determines the num-

ber of iterations. In each iteration, the time cost in each assis-
tant query is decided by the average label size jLj, the
number of assistant queries hinges on the average degree d,
and the time consumption of the c operations depends on
jLj. In total, the time complexity is OðdkjLjÞ. Compared
with the algorithms which search the complete shortest
path, we adopt offline preprocessing to reduce the online
query latency by directly fetching the kCV objects. Accord-
ing to the recent work [35], jLj can be surprisingly small
even for very large graphs (about 69 for the road network of
western Europe), thus each iteration can be finished in
nearly constant time, which leads to the high efficiency of
kCV query. As for the space consumption in preprocessing,
with some compression methods [40], space cost can be dra-
matically reduced (only 0.8 GB for western Europe).

4.3 Pure-Labeling Method

In the basic method, in order to get the forward and reverse
neighbors of the newly selected vertex on the shortest path,
we need extra assistant queries. When the kCV query is fin-
ished, the total number of assistant queries reaches OðdkÞ.

Although those assistant queries are very efficient, if we
can avoid them, the performance of kCV query can be better
improved. The reason for using extra assistant queries is:
for any subpath ðu; vÞ, Top�ðSP ðu; vÞÞ cannot be found
directly. If labels have such a property: for any pair ðu; vÞ,
Top�ðSP ðu; vÞÞ can be found in LfðuÞ \ LrðvÞ, then the assis-
tant queries are not necessary any more. Denote operation
c0ðu; vÞ ¼ Top�ðSP ðu; vÞÞ, all we need is applying c0ðu; vÞ.
We call this optimization as pure-labeling method.

4.3.1 Preprocessing

We use the same vertex ranking criterion as the basic
method, but modify the way of label construction in the pre-
processing of pure-labeling method.

If at least one shortest path between pair ðs; tÞ passes
through vertex v, it is defined as v covers ðs; tÞ. As a further
extension, we give a definition of real-cover:

Definition 5 (Real-cover). If a vertex v is on at least one short-
est path SPiðs; tÞ 2 ASP ðs; tÞ, and v 6¼ s; t, then v real-covers
ðs; tÞ.
Initially, all labels are empty. We process the vertices in

decreasing order of their significance. Suppose the next vertex
to be processed is u, then we run Dijkstra search from it. The
pruning principle is modified from the basic method. In the
basic method, for every vertex v visited by the search, if
dhðu; vÞ � dðu; vÞ, then all the vertices in descendantsðv;
SPT ðuÞÞ can be pruned from SPT ðuÞ. However, dhðu; vÞ �
dðu; vÞ can only prove that vx ¼ TopðSPðu; vÞÞ has been put
into LfðuÞ and LrðvÞ, but vx might be an endpoint, i.e., vx ¼ u
or vx ¼ v. Thuswemodify the principle of pruningwhile run-
ning the Dijkstra search from every u 2 V as below (take the
forward search as example):

(1) If dhðu; vÞ < dðu; vÞ, then ðu; vÞ must have been cov-
ered by previous hubs except v, then we prune the
descendantðv; SPT ðuÞÞ directly;

(2) If dhðu; vÞ > dðu; vÞ, insert ðu; dðu; vÞÞ into LrðvÞ and
continue the search as normal;

(3) If dhðu; vÞ 	 dðu; vÞ and TopðXÞ ¼ v, where X is a set
of vertices:

X ¼ fxjx ¼ argmin
w2Lf ðuÞ\LrðvÞ

ðdhðu;wÞ þ dhðw; vÞÞg (7)

then we add ðu; dðu; vÞÞ into LrðvÞ, then descendant
ðv; SPT ðuÞÞ can be pruned.

Lemma 2. With the preprocessing of pure-labeling, for any pair
ðs; tÞ, top�ðs; tÞ 2 LfðsÞ \ LrðtÞ.

Proof. For any pair ðs; tÞ, suppose v ¼ topðs; tÞ and
v� ¼ top�ðs; tÞ. If v ¼ v�, obviously v 2 LfðsÞ \ LrðtÞ. Oth-
erwise, notice that v� is the highest-significance vertex in
V ðSP ðs; v�ÞÞns and V ðSP ðv�; tÞÞnt, thus, in the preprocess-
ing, the Dijkstra search rooted by v� can visit s and t, and
then v� is added into LfðsÞ and LrðtÞ. Therefore, top�ðs; tÞ
can always be found in LfðsÞ \ LrðtÞ. tu
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4.3.2 Query

The pseudo code of the pure-labeling method is shown in
Algorithm 2. In pure-labeling method, by omitting assistant
queries, the implementation can be much more concise: just
do c0 operations to select the kCV objects (lines 10-13) and
split subpaths directly (line 9) in each iteration. The correct-
ness of the answer of pure-labeling method can be proved
similarly to the basic method.

Algorithm 2. Pure-Labeling Method of kCV Query

1: ktop ¼ ;
2: queue.push(c0ðs; tÞ)
3: while jktopj < k and !queue.isEmpty do
4: x=queue.pop()
5: ktop.push(x)
6: Subpath sp ¼ x.getsubpath()
7: Vertex u ¼ sp.getStart()
8: Vertex v ¼ sp.getEnd()
9: splitPath(sp)
10: Vertex topux=c

0ðu; xÞ
11: Vertex topxv=c

0ðx; vÞ
12: queue.push(topux)
13: queue.push(topxv)
14: end while

Complexity. Inferred from Lemma 2, the assistant queries
are not necessary in pure-labeling method, thus the time
complexity can be reduced to OðkjLjÞ.

4.3.3 Multiple Shortest Paths

Since shortest paths are barely unique in most graphs, sev-
eral strategies are presented to deal with this case.

� Determine which path to be chosen with some cri-
teria. For example, break ties online in favor of
higher significance vertices, as we applied in Sec-
tion 4.2.2.

� Return the kCV objects on every shortest path
SPiðs; tÞ 2 ASP ðs; tÞ.

For the second strategy, we need some modification based
on the pure-labeling method. First, in the preprocessing,
while running the Dijkstra search from every u 2 V , for
each v visited by the search, the principle of pruning is (take
the forward search as example):

(1) If dhðu; vÞ < dðu; vÞ, prune descendantðv; SPT ðuÞÞ
directly;

(2) If dhðu; vÞ ¼ dðu; vÞ, then we add ðu; dðu; vÞÞ into
LrðvÞ, and descendantðv; SPT ðuÞÞ can be pruned;

(3) If dhðu; vÞ > dðu; vÞ, insert ðu; dðu; vÞÞ into LrðvÞ and
continue the search as normal.

Lemma 3. With labels established in above way, for each shortest
path SPiðs; tÞ 2 ASP ðs; tÞ, LfðsÞ \ LrðtÞ must contain
TopðSPiðs; tÞÞ.

Proof. Similar to Lemma 1, but notice that for every vspi ¼
TopðSPiðs; tÞÞ, where SPiðs; tÞ 2 ASP ðs; tÞ, if we split
SPiðs; tÞ into SPiðs; vspiÞ and SPiðvspi ; tÞ, apparently vspi is
the highest-significance vertex on both SPiðs; vspiÞ and
SPiðvspi ; tÞ, according to the new pruning strategy, vspi
must be put into LfðsÞ and LrðtÞ. Therefore, the top

vertices on each shortest path SPiðs; tÞ 2 ASP ðs; tÞ are in
both LfðsÞ and LrðtÞ. tu
In query, while splitting a subpath ðu; vÞ, we use a set Tm

to store all the vertices which minimize dðu; vxÞ þ dðvx; vÞ
for vx 2 LfðuÞ \ LrðvÞ, i.e., Tm ¼ fvx 2 LfðuÞ \ LrðvÞj argminvx
ðdðu; vxÞ þ dðvx; vÞÞg. For each vi 2 Tm, use assistant queries
to collect all the neighbors in Nrðvi; uÞ and Nfðvi; vÞ, then
continue the same process in Algorithm 2. If we denote the
average number of the shortest paths between the same
pairs as jNpj, the complexity only needs to be multiplied by
it as OðdkjLjjNpjÞ. Observing that jNpj can be considered as
a small constant in real-world networks, the complexity can
be still regarded as OðdkjLjÞ.

4.4 Multi-Threading Method

In order to further improve the performance of the previous
methods, we switch to the approximate method and imple-
ment it in parallel with multi-threading technique. Although
the basic method is already reasonably fast for real-time
applications, we can still explore a parallel algorithm to
achieve higher efficiencywith a little sacrifice of optimality.

In the ith iteration, the above sequential methods split
only one subpath (the subpath which passes the ith CV
object). To enhance the performance, we propose a parallel
method which has the same preprocessing as the basic
method but differs in query:

In an iteration, suppose SP ðs; tÞ has been split into x
subpaths: P1; P2; . . . ; Px (critical vertices selected in earlier
iterations have been removed from SP ðs; tÞ), do c opera-
tions on P1 � Px in parallel, and get the corresponding can-
didate vertices v1 � vx, then put them into a priority queue
which supports the multi-threading technique. When the
number of all selected candidate vertices reaches ak, where
a is a positive parameter (a 	 1), the algorithm terminates.
The ak vertices are sorted by significance and the top-k ones
of them are returned as result.

An example is shown in Fig. 3 where we set a ¼ 1:5 and
k ¼ 3. For query ðvs; vtÞ, in the 2nd iteration, P ðvs; vtÞ has
been split into two subpaths P ðvs; v2Þ and P ðv4; vtÞ. The rele-
vant operations on them run in parallel, then the candidate
vertices v1; v5 are pushed into a priority queue. In the 3th
iteration, four subpaths are processed simultaneously, then
the total number of all candidate vertices is jfv3; v1; v5;

Fig. 3. An example of the multi-threading method.
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vs; v2; v4; vtgj ¼ 7 > ak ¼ 4:5, thus the algorithm stops and
returns the top-3 vertices v3; v1; v5.

Speed Up. In each iteration of a sequential method, only
one critical vertex will be selected and only one subpath
will be split. Regard these as one unit operation, during
the whole query process, totally there are k unit opera-
tions (suppose there are more than k hops on the shortest
path). In the multi-threading method, in each iteration,
unit operations on different subpaths can run simulta-
neously. In optimal case, suppose the algorithm runs fully
in parallel, compared with the sequential methods, the
number of iterations in multi-threading method can be
logarithmically decreased to log ðakÞ, then the efficiency of
multi-threading method exceeds the basic method by
k=log ðakÞ times. Considering that the number of threads
in a computer is limited, the parallel method might not
achieve logarithmical speedup, but according to our
experimental results, the speedup of the multi-threading
method is still quite notable.

Accuracy. As this algorithm splits paths in parallel, the
result might not be the exact kCV objects. However, consid-
ering the complex factors in real-world networks, approxi-
mate results are still acceptable. The accuracy of the answer
of multi-threading method is determined by the topology of
the graph and the total order. We denote the kCV objects
returned by the multi-threading method of kCV query ðs; tÞ
as Mktopðs; tÞ. The accuracy of the multi-threading method
can be measured in different ways.

Definition 6 (Similarity). Denote comðs; tÞ ¼ Mktopðs; tÞ \
ktopðs; tÞ. Similarity is defined as the quotient of jcomðs; tÞj
and the total number of the returned critical vertices.

Similarityðs; tÞ ¼ jcomðs; tÞj
minfk; hopðSP ðs; tÞÞg (8)

hop() denotes the number of hops on the path. In the
best case, the exact kCV objects can all be found in query
and the similarity is 1. In the worst case, every time a sub-
path is split, the rest critical vertices in ktopðs; tÞ all lie in
the same side, which determines the lower limit of simi-
larity as log ðakÞ=k. However, the worst case hardly hap-
pens in real-world networks, and the experimental results
of random queries show that the accuracy is quite high in
practice.

We sort the vertices in Mktopðs; tÞ and ktopðs; tÞ respec-
tively in decreasing order of significance. Suppose u is the
ith vertex in Mktopðs; tÞ, and v is the jth vertex in ktopðs; tÞ,
we mark i as the index of u in Mktopðs; tÞ (and j is the index
of v in ktopðs; tÞ). We define compðs; tÞ as the set of vertices
which have same indices in bothMktopðs; tÞ and ktopðs; tÞ.
Definition 7 (Pos-similarity). We define pos-similarity as

the quotient of jcompðs; tÞj and the total number of returned
critical vertices.

Pos-similarityðs; tÞ ¼ jcompðs; tÞj
minfk; hopðSP ðs; tÞÞg (9)

a serves to control the tradeoff between the speed and
accuracy. In our experiment, the accuracy is quite good
even when a ¼ 1.

5 DISTRIBUTED SOLUTIONS TO KCV QUERY

This section introduces the algorithm and implementation
on distributed platform for kCV problem. On centralized
platform, the algorithms require a high-performance com-
puter with large memory, but the problem can be solved
with a cluster which consists of a set of ordinary machines.
Thus we study on applying our algorithm to distributed
paradigms, which have been widely used in recent research
work [41], [42], [43], [44]. We use Spark [45], a general and
efficient distributed engine for large-scale data processing
as our platform. Spark adopts resilient distributed dataset
(RDD), which is a distributed collection of elements, sup-
porting parallel operations and fault-tolerant mechanism.

The basic kCV query cannot be well parallelized, for the
basic method is a sequential process. The observation that
only those highest-significance vertices are needed in most
cases leads to our current implementation on distributed
platform, where we can use the most important landmarks
to construct the labels and parallelize the query algorithm.

As distributed processing is more appealing to appli-
cations with heavyworkload, single kCV query doesn’t need
a distributed platform to accelerate it, instead, we investigate
a batch of kCV queries in distributed framework, which can
process a batch of kCV queries by taking advantage of the
distributed computing power. Top-k batch (kBCV) query is
faced with multiple simultaneous requests on all pairs of
vertices in a query set. kBCV query is useful in many cases.
For example, in social network, query for the important indi-
viduals of the connections between every pair in a group is
quite common. In web graphs, searching for the significant
hubs on all-pair accesses in a LAN is also frequently applied.
We implement the algorithm efficiently, exploiting reverse
labeling and pruning strategy.

5.1 Preprocessing

Under most circumstances, only those most critical vertices
are of the users’ interest. With regard to this observation, we
investigate approximate approaches, which only focus on
those highest-significance vertices. In our implementation,
vertices which have higher significance than a fixed value Rs

are selected as landmarks. The set of landmarks is denoted by
Sl, i.e., Rs ¼ jSlj. Labels are established only with the land-
marks. Label construction on distributed platform is a multi-
source shortest path search rooted by the jSlj landmarks.
In the search from each li 2 Sl, put li and the corresponding
distance into the labels of all the vertices visited.

Traditional shortest path searches in large graphs are
quite costly. In order to improve the performance of the pre-
processing, we use shortcuts inserted by the local shortest
path searches to reduce the search space in label construc-
tion. Labels are generated with the jSlj landmarks on the
auxiliary graph Gþ, which consists of the original graph G
and those inserted shortcuts. With these shortcuts, labels
can be constructed more efficiently.

As Algorithm 3 shows, the preprocessing consists of two
steps. In the first step (lines 1-17), we run local shortest path
searches from every v 2 V with a hop limit H�, where H� is
a positive integer. For each local shortest path SPlðu; vÞ with
hopðSPlðu; vÞÞ ¼ H, insert a shortcut u ! v with length
dlðu; vÞ into G, where H is a positive integer and H < H�,
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dlðu; vÞ is the length of SPlðu; vÞ. In real-world networks,
with properH chosen, nearly all local shortest distances can
approach or be equal to the actual distances. The shortcuts
make G into auxiliary graph Gþ.

Algorithm 3. Preprocessing of kBCV Query with
Landmark set Sl on Distributed Platform

1: for u; v 2 V do
2: distanceListðu; vÞ ¼ 1
3: end for
4: for u 2 V do
5: calculate dlðu; vÞ, v 2 V with localBFSðu;H�Þ
6: for all ððu; vÞ; dlðu; vÞÞ do
7: if dlðu; vÞ < distanceListðu; vÞ then
8: update distanceListwith ððu; vÞ; dlðu; vÞÞ
9: end if
10: end for
11: end for
12: Gþ ¼ G
13: for ðu; vÞ 2 distanceList do
14: for hopðSPlðu; vÞÞ ¼ H do
15: insert shortcut u ! vwith length dlðu; vÞ into Gþ

16: end for
17: end for
18: for v 2 Sl do
19: for all vertices ui 2 SPT ðvÞ do
20: update LðuiÞwith ðv; dðui; vÞÞ
21: end for
22: end for

After shortcuts are inserted, we run a multi-source short-
est path search in Gþ to establish the labels (lines 18-22).
Shortcuts can reduce the diameter D of G (the largest num-
ber of hops on all shortest paths) to at most D

H þH. In this
way the search space can be decreased and the performance
is enhanced. We denote the labels generated with jSlj land-
marks as jSlj-index.

5.2 KBCV Query

With distributed framework, we can process a batch of kCV
queries simultaneously. A formal definition is given as
follows:

Definition 8 (kBCV query). Given a set of vertices Sq ¼
fv1; v2; . . . ; vjSq jg and a positive integer k, a kBCV query
returns the kCV objects on SP ðvi; vjÞ for every pair ðvi; vjÞ,
vi; vj 2 Sq.

In our algorithm, labels are distributively stored in an
RDD with hkey, valuei pairs as elements, where each vertex
ID vi is the key and the label LðviÞ is its value. First the labels
are reversed and the hubs are output as keys. As a pruning
method, the hubs are sorted by significance, then only the
top-kd highest-significance hubs are selected as candidate
critical vertices, where d is a positive number ðd 	 1Þ. The
pruning method is based on the fact: the highest-signifi-
cance vertices can cover most shortest paths. In most cases,
critical vertices query can be solved with only a small set of
those highest-significance hubs. With the pruning strategy,
the algorithm provides approximate results, where parame-
ter d serves to control the tradeoff between accuracy
and efficiency. The larger d is, the fewer hubs are pruned,

resulting in higher accuracy at the cost of time and space.
Considering that the highest-significance vertices are of
most users’ interest, users could set a parameter R as a
threshold to limit the significance of returned vertices. If
users set R, those hubs with lower significance than R are
also pruned. In this way the query only returns critical verti-
ces with significance above R. With jSlj-index, we can
answer kBCV queries with any threshold R � jSlj. The user-
defined R can help the algorithm to control the pruning
more flexibly and achieve higher efficiency. After pruning,
reversed pairs will be distributed to multiple machines
according to their hubs. We calculate the shortest distances
and return the kCV objects for each ðu; vÞ; u; v 2 Sq. By com-
puting the shortest distance for each pair in parallel, kCV
objects can be found efficiently. The process of computing is
scalable with load balance strategies.

An implementation of our solution to kBCV query is
shown in Algorithm 4. For convenience of description,
we just display the case of undirected graphs, but it is
simple to extend the method to directed case. Here we
explain Algorithm 4 in detail. On each machine, for every
u 2 LðvÞ, we reverse the original pair from hv; ðu; dðu; vÞÞi
to hu; ðv; dðu; vÞÞi (lines 1-3). The pruning is implemented
with a filter operation on the RDD (lines 4-8). Then the
shortest distances can be calculated simultaneously on
different machines (lines 9-12). Shuffle operations are
required for the repartition of data across machines. In
the last step, kCV objects on every SP ðvi; vjÞ are returned
(lines 13-15), where vi; vj 2 Sq.

Algorithm 4. A Distributed Implementation of kBCV
Query

1: for each element ðu; dðu; vÞÞ 2 LðvÞwhere v 2 Sq do
2: Output hu; ðv; dðu; vÞÞi
3: end for
4: for all hu; ðv; dðu; vÞÞi do
5: filter out the hubs u, where rðuÞ < R
6: select top k � d hubs, denoted by u1; u2; . . . ; uk�d
7: Output hui; ðv; dðui; vÞÞi, i 2 ½1; k � d

8: end for
9: for each hu; ðvi; dðvi; uÞÞi and hu; ðvj; dðu; vjÞÞi do
10: dðvi; vjÞ ¼ dðvi; uÞ þ dðu; vjÞ
11: Output hðvi; vjÞ; ðu; dðvi; vjÞÞi
12: end for
13: for all hkey, valueiwith key¼ðvi; vjÞ do
14: Outputhðvi; vjÞ; kCV objects on SP ðvi; vjÞi
15: end for

Complexity. Suppose there are p machines on the cluster.
If p ¼ 1, the algorithm is fully parallelized. Reversing
labels in step 1 takes OðjSqjjSljÞ time. Then a shuffle is
required to select the top kd candidate critical vertices. Time
consumption in distance computation decreases with p. For
each candidate vertex, computing the distance costs jSqj2. In
total, the time complexity is OðjSqjjSlj=pþ jSqj2=pþ TsÞ,
where Ts denotes the time cost in shuffle. The space con-
sumption is OðnjSljÞ.

6 EXPERIMENTS

In this section we will present experimental results of the
algorithms mentioned in this paper. The graphs we tested
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are real-world networks taken from the 9th DIMACS
website1 and Stanford large network dataset collection,2

including road networks, social networks and web graphs.
For each graph, Table 2 gives detailed characteristics.

6.1 Experiments on Centralized Platform

On centralized platform, we implemented our algorithms in
C++ and compiled them with Visual Studio 2013. Experi-
ments were conducted in a 64-bit Windows 8 workstation
with two Intel Xeon CPUs (3.33 GHz) and 64 GB memory.
Each CPU has 4 cores. In the experiments of multi-threading
method, all 8 cores were used with OpenMP by default. We
adapted the methods of label construction in [30], [35], [36]
for the preprocessing, with no label compression methods.

6.1.1 Preprocessing

For the basic method, Table 3 shows the experimental
results of the preprocessing on all instances with different
strategies of significance ranking. The performance indica-
tors include the average label size (La), preprocessing time
and memory space. We employ the preprocessing of CH
[30] to remove the nonsignificant vertices, which are mea-
sured by the properties of them, including the degree and
betweenness, then reorder the top L highest-significance
vertices in the remained graph, following the way in [36].
We show the result of RK1(L ¼ 0) and RK2(L ¼ 15164), in

comparison with the degree strategy and PageRank, a
widely-applied ranking algorithm. For PageRank, we set
the damping factor d ¼ 0:85 and convergence criterion
" ¼ 0:00001. From Table 3 we find that for social networks
and web graphs, degree strategy and PageRank work well,
but they perform worse than other strategies in road net-
works. Considering that in road networks, the degree of dif-
ferent vertices does not vary obviously, and the paths are
much longer than other types of graphs, thus degree and
PageRank are not suitable strategies for road networks. For
them, betweenness is a better standard. With proper realisti-
cally meaningful vertex properties for different networks
considered, the label sizes can be well reduced and be of
benefit to the query efficiency.

Fig. 4 shows the preprocessing of the basic method, pure-
labeling method and the case of multiple shortest paths
(multi-SP) mentioned in Section 4.3.3, and compares them
in terms of space and time consumption. For road networks,

TABLE 2
Instances

Graph Network type Nodes Edges Directed weighted Average degree Max degree

NewYork Road 264,346 733,846 undirected weighted 2.78 16
BAY Road 321,270 800,172 undirected weighted 2.49 14
Florida Road 1,070,376 2,712,798 undirected weighted 2.53 16
NWUSA Road 1,207,945 2,840,208 undirected weighted 2.35 18
CAL Road 1,890,815 4,657,742 undirected weighted 2.46 14
EUSA Road 3,598,623 8,778,114 undirected weighted 2.44 18
CUSA Road 14,081,816 34,292,496 undirected weighted 2.44 18
Brighkite Social 58,228 214,078 undirected unweighted 7.35 2268
WikiTalk Social 2,394,385 5,021,410 directed unweighted 2.10 100032
Orkut Social 3,072,441 117,185,083 undirected unweighted 38.14 33313
NotreDame Web 325,729 1,497,134 directed unweighted 4.60 10721
Google Web 875,713 5,105,039 directed unweighted 5.83 6353

TABLE 3
Performance of Preprocessing with Different Ranking Strategies

Instances Degree PageRank RK1 RK2

La Prep(s) Space(GB) La Prep(s) Space(GB) La Prep(s) Space(GB) La Prep(s) Space(GB)

NewYork 610.9 365.2 1.22 685.1 486 1.36 88.9 64.5 0.2 68.7 468 0.16
BAY 784.3 656.8 1.89 1121.8 1202.3 2.70 69.4 35.8 0.19 49.9 404.2 0.14
Florida 1584.3 8764 12.68 2715.6 31127 21.7 87.1 133.3 0.79 67.2 448.6 0.62
NWUSA 804.2 2865 7.28 1907.4 17263 17.2 90.2 167.2 1.44 75.3 469.5 1.21
CAL 1179.4 9319.4 16.7 DNF DNF DNF 98 234.8 2.96 94 500 2.84
EUSA DNF DNF DNF DNF DNF DNF 139.4 649.1 9.16 127 989 8.29
CUSA DNF DNF DNF DNF DNF DNF 285.3 8142 38.7 230 9728 30.6
Brighkite 90.0 16.9 0.04 86.3 17.5 0.04 83.2 32.3 0.04 76.3 387 0.04
WikiTalk 67.9 1372.0 1.30 78.9 1300.9 1.49 64.3 2348.4 1.23 60.5 4348.5 1.16
NotreDame 21.1 22.5 0.07 33.9 50 0.11 20.3 53.7 0.07 18.6 78.4 0.07
Google 143.4 1173.9 1.01 161.5 1689.7 1.13 141.8 4326.2 1.00 137.0 6374 0.97

Fig. 4. Preprocessing of the basic method, pure-labeling and multi-SP.
1. http://www.dis.uniroma1.it/challenge9/
2. https://snap.stanford.edu/data/
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the results of these three methods do not differ obviously.
The cost of pure-labeling preprocessing exceeds the con-
sumption of the basic method by 1:5% � 25:6% in time and
2:3% � 6:3% in space. For multiple shortest paths, the time
consumption is 0:7% � 13:7% more than the basic method,
and the space cost is 2:9% � 6:5% higher. For social net-
works and web graphs, considering that there are many
shortest paths between same pairs, the costs of pure-label-
ing and multi-SP methods also turn higher.

6.1.2 Efficiency of Different Methods of Query

Fig. 5 compares the efficiency of the basic method and some
traditional shortest path algorithms to answer kCV query.
The time consumption of the basic method increases with k.
Obviously, the basic method outperforms other methods by
1:4 � 5 orders of magnitude. Traditional algorithms cannot
directly obtain the kCV objects in top-down order. Even
with optimization, they still have to get much more than k
vertices, or even all vertices on the shortest path and then
compare their significance. We also present the time con-
sumption when we set k ¼ 1, i.e., query for the complete
shortest paths. The results prove that our basic method is an
efficient way of shortest path sketch.

Fig. 6 presents the time consumption of the basic method,
multi-threading method and pure-labeling method when k
varies from 1 to D. Each time we randomly chose 1,000,000
pairs of vertices for kCV queries, then calculated the aver-
age query time.

As the overall trend shown in Fig. 6, for the general
methods, the query time increases obviously (nearly
linearly for sequential methods) with k when k is small.
This is reasonable because k determines the number of
unit operations, which dominates the time consumption
if the label sizes of different vertices are assumed to be
uniform. When k grows larger, for many query pairs, k
approaches to or even exceeds the number of hops on
their shortest paths. Therefore, the curves of query time
tend to become smooth.

Fig. 6 compares the three methods in terms of the query
time. In the experiments of multi-threading method, we set

a ¼ 1:0 and use 8 threads. All the three methods can respond
in microsecond level, competent for real-time kCV queries. In
comparison, the time cost of the basic method is most expen-
sive. Pure-labeling method outperforms it by 14% � 51%. In
road networks, the performance of multi-threadingmethod is
a bit subtle: when k is very small, its query latency is slightly
higher than the basic method. This phenomenon is attributed
to the cost of multi-threading technique. However, when k
grows, multi-threading method shows its superiority, which
outperforms pure-labeling method by 3 � 6 times. In social
networks and web graphs, most shortest paths have much
less hops than road networks, for example, in Brightkite,most
shortest paths consist of only 3 � 10 vertices. In this case, the
multi-threadingmethod is not necessary.We can further com-
bine the sequential and multi-threading methods to obtain a
more flexible solution: apply the basic method if k is very
small, and usemulti-threadingmethod to accelerate the query
when k increases.

6.1.3 Effect of a on Accuracy and Efficiency

We investigate the effect of a in multi-threading method.
The experimental results confirm our analysis in Section 4.4.
Fig. 7 describes the change trend of query time with differ-
ent a. Not surprisingly, time consumption increases with
larger a. When a ¼ 8, the query latency is 1:5 � 2:3 times
higher than the time cost when a ¼ 1. Fig. 8 shows the accu-
racy with different values of a ¼ 1:0; 1:5; 2; 3; 4; 8.

In general, the results have deviations from the exact
kCV objects, but they are also considerably accurate. For
most instances, similarity stays over 95 percent and pos-
similarity always exceeds 70 percent when a 	 4. In fact, we
find the quality of the result is already acceptable when
a ¼ 1, achieving 70 percent similarity even in the worst case.

The curves in Fig. 8 are in the shape of check marks.
Accuracy is high when k is small but decreases gradually
and reaches a bottom when k grows. This is owing to the
growing number of the subpaths which should be split. If k
continues increasing, then the accuracy rises again because
ak approaches to D, leading to more common vertices
returned by both sequential and multi-threading methods.

Fig. 5. Efficiency of basic method and traditional methods for kCV query. Fig. 6. Time consumption of the basic method, multi-threading method
and pure-labeling method.
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6.1.4 Parallelization in Multi-Threading Method

Fig. 9 shows the impact of parallelization on query latency
when we set the number of threads Nt to 1, 2, 4, 8 respec-
tively. From the figure we can imply that the speedup of
multi-threading technique is not obvious when k is small,
but if k is larger, the query performance is apparently
improved when Nt increases. Every time when we double
Nt, the query efficiency can be enhanced by 1:2 � 1:9
times.

6.2 Experiments on Distributed Platform

We conducted experiments with Spark 1.3.0 in Scala, on a
cluster with 9 workers, each worker has 6 cores and 18 GB
memory, totally 54 cores and 162 GB memory. For each
instance, we preprocessed indices with Rs ¼ 500 sequen-
tially. Unless otherwise stated, in each experiment on kBCV
query, we randomly picked query sets, each consists of
1,000 vertices, set threshold R ¼ Rs, then calculated the
average results of the 1,000,000 kCV queries.

6.2.1 Performance of kBCV Query with Varying jSqj
Fig. 10 presents the total time of a kBCV query on Sq with
different sizes. The figure reveals that kBCV query latency
is sublinear with respect to jSqj. With the optimization tech-
niques of the distributed platform, kBCV queries with larger
query sets perform better in average latency, which indi-
cates that distributed platform is appealing to kBCV queries.

6.2.2 Efficiency of kBCV Query with Varying k and d

The performance of kBCV query is shown in Fig. 11, where k
varies from 1 to 32, d is set to 1, 2, 4, 10, 15, 20, 25. For fixed d,
there is an obvious increasing tendency when k increases,
which accords with the intuition.Whenwe focus on the effect
of d, the figure indicates that higher d incurs higher time con-
sumption. When d ¼ 10, average query time is 2 � 3:2 times
higher than the cost when d ¼ 1. That is because higher d leads
toweaker pruning and higherworkload of computation.

6.2.3 Accuracy of kBCV Query

Fig. 12a presents the accuracy of kBCV query when d varies
from 1 to 25 and k is fixed to 20. We measure the accuracy
by similarity, i.e., the ratio of the common kCV objects
between the answers returned by the basic method and
Algorithm 4 to all the vertices returned by Algorithm 4.
As d serves to control the tradeoff between efficiency and
accuracy, larger d leads to higher accuracy at the cost of
query time. On average, accuracy stays higher than 70%
with d 	 10 for most instances.

Fig. 8. Accuracy (similarity and pos-similarity) with different a in multi-
threading method.

Fig. 7. Time consumption with different a in multi-threading method. Fig. 9. Time consumption with different numbers of threads in multi-
threading method.

Fig. 10. Total time cost of kBCV query with different jSqj.

2010 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 10, OCTOBER 2018

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 01,2021 at 02:32:13 UTC from IEEE Xplore.  Restrictions apply. 



6.2.4 Speed-Up of kBCV Query

On distributed platform, the speed-up with the increasing
number of computation cores in the cluster is a main fea-
ture. Fig. 12b describes the time cost with different num-
bers of cores Nc used in the cluster. We set k ¼ 20 and
d ¼ 4. In practice, most time is spent in shuffle, but with
more cores in the cluster, computation is distributed and
the total time can be substantially reduced. According to
the figure, the efficiency is greatly enhanced with more
cores. The average query time when Nc ¼ 54 is improved
by 13 � 32 times compared with the case when Nc ¼ 1.
This result confirms the satisfying speed-up of kBCV query
on distributed platform.

7 CONCLUSION

In this paper, we propose kCV query as a kind of shortest path
sketch. Our algorithm is based on hierarchical strategies,
applying distance oracle to deal with shortest distance queries
in the preprocessing. As for the query, we stand on a new
point of view, pay attention to those crucial vertices on the
shortest path and study on algorithms on both centralized and
distributed platforms. On centralized platform, we propose a
basic algorithm as a fundamental solution and then extend it
to other methods with optimization and parallelism. Multi-
threading method is especially attractive, which can achieve
much higher efficiencywith slight sacrifice of accuracy.

On distributed platform,we investigate kBCVquery,which
aims to process a batch of kCV queries. By taking advantage of
distributed computation, the algorithm is speeded up.

All methods of kCV query mentioned in this paper are
of high efficiency, returning an accurate sketch of shortest
paths in microseconds.

ACKNOWLEDGMENTS

This work was supported by the NSFC (61729202, U1636210
and 61602297), the National Basic Research Program (973
Program, No. 2015CB352403), the National Key Research and
Development Program of China (2016YFB0700502), the Scien-
tific Innovation Act of STCSM (15JC1402400), the Opening
Projects of State Key Laboratory of Software Development
Environment (SKLSDE-2017KF-02), the Beijing Key Labora-
tory of Big Data Management and Analysis Methods, the
Guizhou Provincial Key Laboratory of Public Big Data
(2017BDKFJJ0), and Microsoft Research Asia and CCF-
Tencent Open Research Fund RAGR20170114.

REFERENCES

[1] Y. Tong, J. She, and R. Meng, “Bottleneck-aware arrangement over
event-based social networks: The max-min approach,”World Wide
Web, vol. 19, no. 6, pp. 1151–1177, 2016.

[2] H.Huang, Y.Gao, L. Chen, R. Li, K.Chiew, andQ.He, “Browsewith
a socialweb directory,” in Proc. ACMSIGIR, 2013, pp. 865–868.

[3] J. Zhao, Y. Gao, G. Chen, and R. Chen, “Towards efficient frame-
work for time-aware spatial keyword queries on road networks,”
ACM Trans. Inf. Syst., vol. 36, no. 3, 2017, Art. no. 24.

[4] Y. Gao, X. Miao, G. Chen, B. Zheng, D. Cai, and H. Cui, “On effi-
ciently finding reverse k-nearest neighbors over uncertain
graphs,” Int. J. Very Large Data Bases, vol. 26, pp. 1–26, 2017.

[5] X. Miao, Y. Gao, G. Chen, B. Zheng, and H. Cui, “Processing
incomplete k nearest neighbor search,” IEEE Trans. Fuzzy Syst.,
vol. 24, no. 6, pp. 1349–1363, Dec. 2016.

[6] Y. Gao, J. Zhao, B. Zheng, and G. Chen, “Efficient collective spatial
keyword query processing on road networks,” IEEE Trans. Intell
Transp. Syst., vol. 17, no. 2, pp. 469–480, 2016.

[7] Y. Gao, X. Qin, B. Zheng, and G. Chen, “Efficient reverse top-k
boolean spatial keyword queries on road networks,” IEEE Trans.
Knowl. Data Eng., vol. 27, no. 5, pp. 1205–1218, May 2015.

[8] D. Xie, G. Li, B. Yao, X. Wei, X. Xiao, Y. Gao, and M. Guo,
“Practical private shortest path computation based on oblivious
storage,” in Proc. IEEE 32nd Int. Conf. Data Eng., 2016, pp. 361–372.

[9] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou, “Spatial
approximate string search,” IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 6, pp. 1394–1409, Jun. 2013.

[10] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in
Proc. 29th Int. Conf. Data Eng., 2013, pp. 733–744.

[11] B. Yao, F. Li, and P. Kumar, “K nearest neighbor queries and knn-
joins in large relational databases (almost) for free,” in Proc. 26th
Int Conf Data Eng., 2010, pp. 4–15.

[12] X. Xiao, B. Yao, and F. Li, “Optimal location queries in road net-
work databases,” in Proc. IEEE 27th Int. Conf. Data Eng., 2011,
pp. 804–815.

[13] E. W. Dijkstra, “A note on two problems in connexion with
graphs,”Numerische Mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[14] H. Bast, S. Funke, and D. Matijevi�c, “TRANSIT: Ultrafast shortest-
path queries with linear-time preprocessing,” in Proc. 9th
DIMACS Implementation Challenge—Shortest Path, 2006.

[15] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, “In
transit to constant time shortest-path queries in road networks,”
in Proc. Meeting Algorithm Eng. Exp., 2007, pp. 46–59.

[16] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest
path and distance queries on road networks: Towards bridging
theory and practice,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2013, pp. 857–868.

[17] A. D. Zhu, X. Xiao, S. Wang, and W. Lin, “Efficient single-source
shortest path and distance queries on large graphs,” in Proc. 19th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp. 988–1006.

Fig. 11. Efficiency of kBCV query with different d and k.

Fig. 12. Accuracy and speed-up of kBCV query.

MA ETAL.: TOP-KCRITICALVERTICES QUERYON SHORTEST PATH 2011

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 01,2021 at 02:32:13 UTC from IEEE Xplore.  Restrictions apply. 



[18] S. Holzer and R. Wattenhofer, “Optimal distributed all pairs
shortest paths and applications,” in Proc. ACM Symp. Principles
Distrib. Comput., 2012, pp. 355–364.

[19] E. Solomonik, A. Buluc, and J. Demmel, “Minimizing communica-
tion in all-pairs shortest paths,” in Proc. IEEE 27th Int. Symp. Parall.
Distrib. Process., 2013, pp. 548–559.

[20] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou,
“Shortest path and distance queries on road networks: An experi-
mental evaluation,” Proc. VLDB Endowment, vol. 5, no. 5, pp. 406–
417, 2012.

[21] Y. Tao, C. Sheng, and J. Pei, “On k-skip shortest paths,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data, 2011, pp. 421–432.

[22] I. Abraham,D. Delling, A. V. Goldberg, and R. F.Werneck, “A hub-
based labeling algorithm for shortest paths in road networks,” in
Proc. 10th Int Conf. Exp. Algorithms, 2011, pp. 230–241.

[23] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, “Reachability
and distance queries via 2-hop labels,” SIAM J. Comput., vol. 32,
no. 5, pp. 1338–1355, 2003.

[24] H. Klauck, D. Nanongkai, G. Pandurangan, and P. Robinson,
“Distributed computation of large-scale graph problems,” in Proc.
26th Annu. ACM-SIAMSymp. Discrete Algorithms, 2015, pp. 391–410.

[25] R. C. McColl, D. Ediger, J. Poovey, D. Campbell, and D. A. Bader,
“A performance evaluation of open source graph databases,” in
Proc. 1stWorkshop Parallel Program. Analytics Appl., 2014, pp. 11–18.

[26] C. McCubbin, B. Perozzi, A. Levine, and A. Rahman, “Finding the
‘needle’: Locating interesting nodes using the k-shortest paths
algorithm in mapreduce,” in Proc. IEEE 11th Int. Conf. Data Mining
Workshops, 2011, pp. 180–187.

[27] D. Nanongkai, “Distributed approximation algorithms for
weighted shortest paths,” in Proc. 46th Annu. ACM Symp. Theory
Comput., 2014, pp. 565–573.

[28] Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle
for billion-node graphs,” Proc. VLDB Endowment, vol. 7, no. 1,
pp. 61–72, 2013.

[29] T. A. J. Nicholson, “Finding the shortest route between two points
in a network,” Comput. J., vol. 9, no. 3, pp. 275–280, 1966.

[30] R. Geisberger, P. Sanders, D. Schultes, and D. Delling,
“Contraction hierarchies: Faster and simpler hierarchical routing
in road networks,” in Proc. 7th Int. Conf. Exp. Algorithms, 2008,
pp. 319–333.

[31] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for a*:
Shortest path algorithms with preprocessing,” Shortest Path Prob-
lem: 9th DIMACS Implementation Challenge, vol. 74, pp. 93–139,
2009.

[32] S. Abbasi and S. Ebrahimnejad, “Finding the shortest path in
dynamic network using labeling algorithm,” Int. J. Business Soc.
Sci., vol. 2, no. 20, 2011.

[33] I. Abraham, A. Fiat, et al., “Highway dimension, shortest paths,
and provably efficient algorithms,” in Proc. 21st Annu. ACM-
SIAM Symp. Discrete Algorithms, 2010, pp. 782–793.

[34] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: A high-compres-
sion indexing scheme for reachability query,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2009, pp. 813–826.

[35] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck,
“Hierarchical hub labelings for shortest paths,” in Proc. 20th
Annu. Eur. Conf. Algorithms, 2012, pp. 24–35.

[36] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck, “Robust
distance queries on massive networks,” in Proc. Eur. Symp. Algo-
rithms, 2014, pp. 321–333.

[37] A. V. Goldberg, I. Razenshteyn, and R. Savchenko, “Separating
hierarchical and general hub labelings,” in Proc. Int Symp. Math.
Found. Comput. Sci., 2013, pp. 469–479.

[38] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path dis-
tance queries on large networks by pruned landmark labeling,” in
Proc. ACM SIGMOD Int. Conf. Manage Data, 2013, pp. 349–360.

[39] M. Babenko, A. V. Goldberg, H. Kaplan, R. Savchenko, and
M. Weller, “On the complexity of hub labeling,” in Proc. Int. Symp.
Math. Found. Comput. Sci., 2015, pp. 62–74.

[40] D. Delling, A. V. Goldberg, and R. F. Werneck, “Hub label
compression,” in Proc. Int. Symp. Exp. Algorithms, 2013, pp. 18–29.

[41] D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo, “Simba: Efficient
in-memory spatial analytics,” in Proc. Int. Conf. Manage Data, 2016,
pp. 1071–1085.

[42] G. Chen, K. Yang, L. Chen, Y. Gao, B. Zheng, and C. Chen, “Metric
similarity joins using mapreduce,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 3, pp. 656–669, Mar. 2017.

[43] Y. Tong, X. Zhang, and L. Chen, “Tracking frequent items over
distributed probabilistic data,” World Wide Web, vol. 19, no. 4,
pp. 579–604, 2016.

[44] L. Chen, Y. Gao, Z. Xing, C. S. Jensen, and G. Chen, “I2RS: A dis-
tributed geo-textual image retrieval and recommendation sys-
tem,” Proc VLDB Endowment, vol. 8, no. 12, pp. 1884–1887, 2015.

[45] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw Syst. Des. Implementa-
tion, 2012, Art. no. 2.

Jing Ma is working toward the master’s degree
in the Computer Science and Engineering
Department, Shanghai Jiao Tong University. Her
research interests include techniques of graph
analysis, database, and distributed computing.

Bin Yao received the PhD degree in computer sci-
ence from the Department of Computer Science,
Florida State University, in 2011. He is an associate
professor in the Department of Computer Science
and Engineering, Shanghai Jiao Tong University.
His research interests include management and
indexing of large databases, query processing
in spatial and multimedia databases, string and
keyword search, and scalable data analytics. He is
amember of the IEEE.

Xiaofeng Gao received the PhD degree from the
University of Texas at Dallas, in 2010. She is an
associate professor of computer science and
engineering with Shanghai Jiao Tong University.
Her research interests include data engineering,
database management, wireless network, and
optimization algorithms. She is a member of the
IEEE.

Yanyan Shen received the PhD degree from the
National University of Singapore, in 2015. She is
a special associate research fellow of computer
science and engineering with Shanghai Jiao
Tong University. Her research interests include
big data analytics and processing.

Minyi Guo received the PhD degree in information
science from the University of Tsukuba, Japan,
in 1998. He is the head in the Department of
Computer Science and Engineering, and the
director of the Embedded and Pervasive Comput-
ing Center, Shanghai Jiao Tong University. His
research interests include parallel and distributed
processing; parallelizing compilers; cloud comput-
ing; pervasive computing; software engineering,
embedded systems; green computing; and wire-
less sensor networks. He is a fellowof the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2012 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 10, OCTOBER 2018

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on October 01,2021 at 02:32:13 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


